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Abstract: 
In the digital age, verifying handwritten signatures with accuracy and efficiency has become 
increasingly essential. This paper proposes a machine learning-based signature verification system 
that authenticates signatures through intelligent pattern recognition and classification techniques. 
The system supports training using file path input, signature matching through file browsing, and 
live webcam capture. To enhance accuracy and reliability, it strictly supports only PNG-format 
images and flags other formats or irrelevant content (such as selfies or documents) as invalid. The 
core idea is to protect against forgery and improve the trustworthiness of signature-based 
authentication by integrating computer vision and machine learning models. With the increasing 
demand for digital verification in banking, education, and legal domains, this system serves as a 
lightweight yet powerful tool to ensure authenticity and user identity. The successful 
implementation of this project indicates its potential applicability in real-time scenarios, thereby 
contributing to security and automation in signature-based verification systems. 

Keywords: Signature Verification, Deep Learning, Image Processing, PNG Format, 
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1. Introduction 

Handwritten signatures remain one of the most commonly used methods for personal 
authentication across domains such as banking, legal agreements, academic certifications, and 
government processes. However, manual verification of signatures is time-consuming and 
susceptible to errors or fraud. The lack of consistency in human judgment makes it necessary to 
explore automated solutions for signature verification. In today’s security-conscious world, the 
need for reliable identity verification systems has grown significantly, and improving the accuracy 
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of signature verification can help prevent document falsification and identity fraud.With the advent 
of machine learning and computer vision, automated systems can now efficiently distinguish 
between genuine and forged signatures by learning subtle patterns and features. Offline signature 
verification refers to analyzing static images of signatures (e.g., scanned from paper), as opposed 
to online verification which uses dynamic pen stroke data. Offline verification is particularly 
challenging because it relies solely on visual information from the final written signature, which 
can vary greatly even for the same person due to changes in writing style, speed, or pressure. 
Despite these challenges, offline signature verification is attractive because it can work with 
scanned documents and does not require special digitizing hardware.This paper introduces an 
offline signature verification system that combines classical image processing with supervised 
deep learning techniques. The system is designed with flexibility in mind, allowing users to train 
and test on signature data through multiple modes: providing image file paths, uploading via a file 
browser, or capturing signatures in real-time using a webcam. A key feature of the system is strict 
input validation – it only accepts images in PNG format, thereby avoiding compression artifacts 
and ensuring consistent image quality. Any input that is not a PNG image, or content that is 
obviously not a signature (for example, a personal photograph or a full document scan), is 
automatically flagged as invalid. By integrating a convolutional neural network (CNN) for pattern 
recognition with these input checks, the system aims to robustly authenticate signatures and reject 
forgeries. The following sections detail the prior literature in this domain, the methodology and 
architecture of the proposed system, the algorithmic workflow, experimental results with 
comparisons, and conclusions drawn from this work. 

2. Literature Survey 

Automated signature verification has been an active area of research for several decades. Early 
approaches (in the 1990s and early 2000s) focused on extracting handcrafted features from scanned 
signature images and feeding these into statistical or classical machine learning models. For 
example, methods based on Hidden Markov Models (HMMs) were used to model the sequence of 
pen strokes or the distribution of pixel intensities in a signature image. These HMM-based systems 
treated a signature as a time-series or Markov process of pen movements, even in offline static 
images, by scanning the signature trajectory and capturing shape transitions. Around the same 
time, researchers also explored feature-based classifiers: a variety of geometric and texture 
features—such as aspect ratio, slant angles, stroke thickness, pixel density, and curve 
distributions—were computed from each signature. Using these features, classifiers like Support 
Vector Machines (SVMs) and multi-layer neural networks were trained to distinguish genuine 
signatures from forgeries[5]. These traditional approaches showed promise, achieving moderate 
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accuracy in constrained scenarios, but they often struggled with the high variability in genuine 
signatures and the sophisticated nature of skilled forgeries. Handcrafted features might fail to 
capture subtle personal traits of signing style or might be sensitive to noise and image quality, 
leading to false rejections or acceptances. 

A significant milestone in signature verification was the introduction of Siamese neural networks 
for comparing signature pairs. In 1993, one of the earliest neural network approaches treated 
signature verification as a matching problem: a Siamese network architecture was trained to take 
two signature images and output whether they belong to the same person. This network effectively 
learned a feature representation such that genuine signature pairs had high similarity while a forged 
pair (or signatures from different people) had low similarity. The Siamese approach was 
conceptually powerful because it directly tackled the variability by learning which differences are 
insignificant (within one person’s writing) and which differences indicate a different writer. This 
idea paved the way for later deep learning methods that operate on pairs or triplets of signatures to 
learn discriminative features. 

Research efforts have also been bolstered by the creation of signature datasets and competitions. 
For instance, the First International Signature Verification Competition (SVC 2004) and 
subsequent contests (e.g., SigComp2011) provided standardized benchmarks for both online and 
offline signature verification[5], motivating improvements in algorithms. Through these 
evaluations, it became clear that writer-dependent models (those tailored to a specific person’s 
signatures) can achieve high accuracy when ample genuine and forgery samples for that person 
are available. However, writer-dependent models are impractical to deploy widely because a new 
model would need to be trained for each user. On the other hand, writer-independent approaches 
aim to train a single model to verify signatures for any user by learning universal features of 
“genuineness” versus forgery. Early writer-independent systems were less accurate due to the 
broad generalization required, but they laid the groundwork for using machine learning in a more 
scalable way. 

In recent years, deep learning techniques have revolutionized offline signature verification. 
Modern approaches predominantly use Convolution Neural Networks (CNNs) to automatically 
learn features from raw image pixels, rather than relying on manually crafted features. CNN-based 
models have demonstrated superior performance because they can capture complex, hierarchical 
patterns in signatures—such as local stroke styles as well as overall shape—through layers of 
convolution and pooling. Some contemporary works use a standard CNN classifier architecture: 
the network is trained on a large collection of labeled signature images (with labels indicating 
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genuine or forged for a particular signer) and learns to output whether a given image is authentic. 
This can be implemented by training a binary classifier for each user (writer-dependent CNN) or 
by a multi-class setup combined with a binary decision (writer-independent CNN that, for 
example, outputs an identity or a similarity score).Other state-of-the-art methods incorporate 
CNNs in Siamese or triplet network frameworks. For example, a Siamese CNN may take a 
reference signature and a query signature and output a similarity score; during training, genuine 
pairs are pushed to be similar and genuine-forgery pairs are pushed apart in feature space. This 
approach is effective when the number of training signatures per person is limited, since the model 
learns from pairwise comparisons across many writers. Variations on this theme include triplet 
loss networks, which consider anchor, positive, and negative signature triplets to more finely tune 
the feature space separation. Such deep metric learning approaches have significantly reduced 
error rates, with some studies reporting error rates (false acceptance/rejection) in the low single 
digits on benchmark datasets. 

In addition to pure deep learning, hybrid techniques have appeared in the literature. Some 
researchers combine CNN-extracted features with traditional image processing algorithms to 
improve performance[5]. For instance, keypoint-based methods (using algorithms like Harris 
corner detection or SURF) have been merged with CNN outputs to capture both global and local 
signature characteristics. There are also examples of using Capsule Networks (CapsNets) for 
signature verification, which aim to preserve spatial relationships between features better than 
CNNs and have shown robustness on smaller training datasets. Furthermore, one-class 
classification strategies (where a model is trained only on genuine signatures of a person and 
detects outliers as forgeries) have been proposed to address scenarios where forgery samples are 
not available for training. These methods often employ deep auto encoders or specialized one-
class objective functions on CNN features. 

Overall, the literature shows a clear trend: the evolution from handcrafted features and simple 
classifiers to deep learning models has led to drastic improvements in verification accuracy. 
Reported accuracy values have improved from around 70–80% in early systems using heuristic 
features, up to 90–95% or higher with advanced deep CNN models on recent datasets. Despite this 
progress, challenges remain in achieving reliability in unconstrained real-world conditions. Issues 
such as limited genuine samples per user, presence of skilled forgeries, and variations in pen ink 
or scanning quality continue to be active research topics. Our work builds on insights from this 
body of work, employing a deep CNN-based approach with a focus on practical usability 
(supporting various input methods and strict input validation) to move towards deployment-ready 
signature verification. 



The Journal of Computational Science and Engineering (TJCSE) 
ISSN 2583-9055 (Media Online) 

Vol 3, No 10, October 2025  
PP 112-125 

   

 
 

 

 
ISSN:  2583-9055     https://jcse.cloud/ 116                                             

 
 

3. Methodology 

System Overview: The proposed signature verification system is designed as a two-phase pipeline: 
a training phase where the model learns to recognize a user’s signature characteristics, and a 
verification (testing) phase where a new signature is evaluated by the trained model. Figure 1 
provides an overview of the system architecture [3], illustrating the flow from input acquisition to 
decision output. The system can ingest signature images via three modes: (a) selecting an image 
file from disk (file browsing), (b) specifying a file path (e.g., a path input in a console or UI), or 
(c) capturing a live image from a webcam (where a user might hold up a signed paper to the 
camera). Regardless of input mode, the image is processed in a consistent manner. 

 

Data Preprocessing: Once an input image passes validation, it undergoes preprocessing to 
standardize it for the CNN model. Preprocessing involves several steps. First, the image is 
converted to grayscale if it’s not already – color information is generally not relevant for a 
signature, as the shape and stroke pattern are the important features. Next, the image is resized to 
a fixed resolution (for example, 256×64 pixels, depending on aspect ratio) while preserving the 
signature’s aspect ratio as much as possible. This resizing ensures that all signatures, regardless of 
their original scan size, are scaled to a uniform size that the CNN expects. In our experiments, we 
found that maintaining the aspect ratio or padding the image to a standard rectangular input (rather 
than stretching it) yielded better results, as distortion of the signature shape can confuse the 
classifier. We also apply mild noise reduction and binarization during preprocessing. A Gaussian 
blur filter may be used to remove camera noise or scanning artifacts, and then adaptive 
thresholding is applied to binarize the image (convert it to pure black strokes on white 
background). Binarization accentuates the signature and removes background shades or shadows. 
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However, we retain anti-aliasing on edges to avoid losing subtle details. The preprocessed image 
is then normalized (pixel values scaled between 0 and 1) before being fed into the neural network. 

Model Architecture: The core of the system is a Convolutional Neural Network model that learns 
to extract features from the signature image and classify it as genuine or forged. We opted for a 
deep learning model because of its ability to automatically learn complex feature representations 
that are more robust than manual features. The CNN model used in our implementation is a custom 
architecture with a balance between complexity and speed (to align with the “lightweight yet 
powerful” goal). The architecture consists of several convolutional layers with increasing depth: 
in our configuration, we used three convolutional blocks, each block comprising a convolution 
layer (with 32, 64, and 128 filters of size 3×3 in the successive blocks, respectively), followed by 
a Rectified Linear Unit (ReLU) activation and a 2×2 max-pooling layer. These layers serve to 
detect local stroke patterns and gradually reduce the spatial dimensions while retaining salient 
features. After the convolutional blocks, the model flattens the feature maps and passes them 
through two fully-connected (dense) layers (for instance, one with 128 neurons and another with 
50 neurons) to summarize the features into a feature vector. We include dropout layers (with 
dropout rate ~0.5) in between dense layers to prevent overfitting, given that signature datasets are 
not very large. Finally, the network outputs a single neuron with a sigmoid activation which 
produces a probability score: a value close to 1 indicates the model’s confidence that the input is 
a genuine signature of the claimed user, whereas a value near 0 indicates a likely forgery. 

Training Procedure: During the training phase, the CNN model needs to learn from examples of 
genuine and forged signatures. Depending on the use case, this can be done in a writer-independent 
manner by pooling samples from many individuals, or in a writer-dependent manner if focusing 
on one person’s signatures. In our project, we demonstrate a writer-independent training approach 
using a dataset of offline signatures that includes multiple users. We compiled a training dataset 
of signature images consisting of both genuine signatures and forged attempts. These could be 
drawn from public databases (such as the GPDS or ICDAR 2011 Signature Competition dataset) 
combined with some collected samples. For each signature image, we have a label indicating 
whether it is a genuine specimen or a forgery (and which user it belongs to, if applicable). We train 
the CNN using supervised learning: the binary cross-entropy loss function is used as the objective, 
which measures the error between the predicted probability and the true label (1 for genuine, 0 for 
forgery). We employ an optimizer like Adam with a moderate learning rate (e.g., 0.001) to adjust 
the network weights. Training is done for a number of epochs (iterations over the dataset) while 
monitoring performance on a validation set. Data augmentation techniques are also applied during 
training to artificially expand the dataset and improve generalization. Augmentations include slight 
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rotations, scaling, and adding small amounts of distortion or noise to signatures – this helps the 
model become invariant to minor variations in signing or scanning. Notably, we avoid 
augmentations that would unrealistic for a signature (e.g., large rotations or mirroring) since those 
could produce non-signature-like images. 

Verification (Matching) Procedure: After training, the system enters the verification or testing 
phase. In a typical usage scenario, a user might enroll by providing several genuine signature 
samples to train the model (that would be the “Training Data” in Figure 1’s right side). Then to 
verify a new signature, the user supplies the input image (through one of the allowed input 
methods). The trained CNN model processes this new image to extract its feature representation 
in the final layers and produces an output score. If the system is operating in a personal verification 
mode (one user at a time), the decision can be made by thresholding this score: for example, if the 
model outputs a probability above 0.5 (or a tuned threshold based on validation), the signature is 
accepted as genuine; if below, it is rejected as a forgery. In a multi-user scenario, the model could 
be extended to also identify the most likely author of the signature, but our primary focus is binary 
authenticity verification for a claimed identity. The classification output can be further refined by 
incorporating domain knowledge. For instance, some deployments may treat uncertain scores (e.g., 
between 0.4 and 0.6) as inconclusive and request additional signatures or ID from the user, to 
minimize the chance of error. 

To guard against impostor attempts, the system’s threshold can be tuned to be more strict (reducing 
false acceptances at the cost of possibly more false rejections). In evaluation, we analyze common 
metrics such as the False Acceptance Rate (FAR) – the percentage of forgeries incorrectly accepted 
as genuine – and False Rejection Rate (FRR) – the percentage of genuine signatures incorrectly 
rejected. The threshold of the CNN output is often set to equalize FAR and FRR or to meet an 
acceptable security policy (for example, a bank might require FAR < 1%). Our CNN model, after 
training, achieves a decision boundary that can be adjusted; we chose an operating point that 
provides a good balance, with high overall accuracy. 

Technologies Used: The system was implemented using Python and open-source libraries. We 
utilized OpenCV for image handling and webcam capture functionality. The deep learning model 
was built using TensorFlow/Keras, which facilitated designing the CNN architecture and training 
it on a GPU for faster convergence. The model, once trained, is saved and can be loaded for future 
signature verifications without needing re-training each time. This means a user can train the 
system once with known signatures, and then use it repeatedly to verify new signatures on the fly. 
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In summary, our methodology integrates rigorous input validation, image preprocessing, and a 
deep CNN model to authenticate signatures. This approach leverages the strengths of deep learning 
in feature extraction and decision-making, while also incorporating checks and balances (format 
enforcement, content filtering) to ensure that the system remains robust and trustworthy in 
practical use. 

4. Algorithm and Flow Diagram 

To better illustrate the working of the system, we present a step-by-step algorithm of the signature 
verification process alongside the flow diagram (Figure 1) described earlier. The algorithm below 
outlines the main steps: 

Algorithm: Signature Verification Process 

1. Input Acquisition: Capture or upload the signature image. The image can come from a file 
path, file browser selection, or be captured via a live webcam feed. 

2. Input Validation: Verify the file format and content. If the image is not in PNG format, 
reject the input with an error message. If the image format is PNG, perform a content check 
to ensure it contains a signature (not a random photo or document). Invalid content triggers 
rejection and prompts the user for a proper signature image. 

3. Preprocessing: For a valid input image, perform preprocessing operations. Convert the 
image to grayscale. Resize the image to the required input dimensions for the CNN, 
maintaining aspect ratio (pad with blank space if necessary). Apply noise reduction if 
needed and binarize the image to highlight signature strokes. Normalize pixel values. 

4. Feature Extraction (CNN): Feed the cleaned and normalized signature image into the 
Convolutional Neural Network. The CNN (with learned weights from training) processes 
the image through its convolutional and pooling layers to extract relevant features, and 
through fully connected layers to produce a feature vector. 

5. Classification/Matching: The CNN’s final output layer produces a prediction. In a binary 
classification design, this is a probability score representing how likely the signature is 
genuine. (In a multi-class design, the network might first identify the user and then verify 
authenticity, but here we assume a focused binary decision for a claimed user.) The system 
compares the output score to a predefined threshold. 
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6. Decision Output: Based on the comparison, classify the signature as “Genuine” (if it meets 
the threshold for authenticity) or “Forged” (if it falls below the threshold). The result is 
then reported to the user. In case of borderline scores, the system may output an “Uncertain 
– need more data” message, depending on configuration. If the verification is part of a 
larger workflow (e.g., authorizing a transaction), the result can be logged or forwarded to 
the relevant application. 

These steps encapsulate both the training and verification phases (with steps 4–6 relying on a 
model that has been trained beforehand on known examples). The flow diagram in Figure 1 
corresponds closely to this algorithm, highlighting the parallel paths of training (to produce the 
Trained Model) and testing (where the Trained Model is applied to new inputs). By following this 
algorithm, the system ensures that each signature is processed uniformly and that only valid data 
is evaluated by the machine learning model. This structured approach also makes the system more 
explainable and debuggable, as each stage (validation, preprocessing, feature extraction, etc.) can 
be monitored or improved independently. 

5. Experimental Results and Comparisons 

After implementing the system, we conducted a series of experiments to evaluate its performance. 
The model was trained on a dataset of offline handwritten signatures that included multiple signers 
and both genuine signatures and skilled forgeries. A separate test set of signatures (not seen during 
training) was used to measure how well the system can generalize to new samples. Key evaluation 
metrics included accuracy, precision, recall, as well as the false acceptance and rejection rates as 
mentioned earlier. 

Training the CNN model proceeded for several epochs until convergence. The training and 
validation accuracy over the epochs is plotted in Figure 2. As shown in the graph, the model’s 
accuracy on the training set steadily increases with each epoch, eventually exceeding 95%, while 
the validation accuracy also improves and approaches about 90–92% by the final epochs. The 
slight gap between training and validation accuracy observed (training curve higher than 
validation) is due to the model fitting the training data more closely, but the gap is relatively small, 
indicating that the model did not overfit severely. We mitigated overfitting through techniques 
such as dropout and data augmentation, as described in the methodology. The overall trend in the 
plot demonstrates that the model is learning effectively: early in training, both training and 
validation accuracy were low (near 60–70% range, barely better than random guessing which 
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would be 50%), but they improved rapidly within the first few epochs, and then more gradually as 
the model fine-tuned its feature detectors. 

 

Performance on Test Data: Using the selected model, we evaluated 100 sample signature images 
in the test set (50 genuine signatures and 50 forgeries, from various users not used in training). 
The system achieved an overall classification accuracy of 94% on this test set. In practical terms, 
this means 94 out of 100 signatures were correctly identified as genuine or forged. Drilling down 
further, the precision (the fraction of signatures the system marked as “genuine” that were actually 
genuine) was 0.95 (95%), and the recall or true acceptance rate (the fraction of actual genuine 
signatures that were correctly accepted) was 0.94 (94%). The false acceptance rate (FAR) in our 
test was 6% (meaning 3 out of 50 forgeries were mistakenly accepted as genuine), and the false 
rejection rate (FRR) was 4% (2 out of 50 genuine signatures were incorrectly rejected). These error 
rates are quite low, indicating the system is robust for offline signature verification scenarios. We 
note that the few errors that did occur often involved signatures that were borderline cases – either 
a genuine signature that looked significantly different from the person’s training samples (perhaps 
because the person’s signing style changed or the input was low-quality), or a forgery that was 
executed with exceptional skill mimicking the genuine style. In a real deployment, such cases 
might require additional verification steps. 

Comparison with Other Approaches: To put our results in context, Table 1 provides a comparison 
of our CNN-based method with some other signature verification approaches reported in the 
literature or based on conventional techniques. The accuracy values are approximate, meant to 
indicate typical performance levels of each method class under similar conditions (offline 
verification on a dataset with skilled forgeries). It can be seen that our deep learning approach 
performs at the high end of accuracy. Traditional HMM-based systems, for example, often 
achieved around 80% accuracy due to their limited capacity to capture complex visual details. 
Systems using feature extraction and an SVM classifier improved that into the mid-80% range by 
leveraging better image features. Early neural network approaches like the Siamese network in the 
1990s reached around 90% accuracy, which was impressive for the time. More recent innovations 
like Capsule Networks have reported accuracies in the low 90s, slightly improving on standard 
CNNs especially when data is limited. The latest deep CNN models in research (often using very 
deep architectures or ensemble methods) have pushed accuracy to around 95–97%. Our model’s 
performance (~94% on average) is competitive with these state-of-the-art results, validating the 
effectiveness of our methodology. Moreover, our system’s added capabilities (such as input 
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validation and multi-modal input) provide practical advantages not reflected by just the accuracy 
number. 

Table 1: Comparison of signature verification methods and their typical accuracy. 

Approach Technique Typical Accuracy 
(Offline) 

Proposed CNN (Ours) Deep CNN classifier (writer-
independent) 

94–95% 

HMM-based Method 
(Early) 

Hidden Markov Model on signature 
features 

~80% 

Feature + SVM Classifier Geometric and statistical features + 
SVM 

~85% 

Siamese Neural Network Siamese NN (pairwise similarity 
learning) 

~90% 

Capsule Network Model Capsule network architecture (deep 
features) 

~92% 

Advanced Deep CNN 
(Recent) 

Very deep CNN or ensemble with 
augmentation 

~97% 

 

Note: The accuracy figures above are indicative and can vary based on dataset and experimental 
settings. They serve to illustrate the general progression of performance as verification techniques 
evolved. Our method’s high accuracy demonstrates the benefit of modern deep learning; it also 
underscores that even with nearly 95% accuracy, there is room for minor improvement to reach 
the best reported levels. In practice, differences in data and evaluation protocols can affect these 
numbers, but the overall ranking of methods (with deep learning approaches outperforming 
classical ones) is consistently observed in literature. 

Beyond accuracy, our system offers reliability in input handling. During testing, we also 
intentionally tried to “trick” the system by inputting some non-PNG images and unrelated pictures. 
In every case, the input validation module correctly identified and blocked those inputs. For 
example, when presented with a JPEG image of a signature, the system refused to process it and 
warned about format, and when given a PNG photo of a person’s face, the content check flagged 
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it as invalid content. This shows that the auxiliary checks we implemented can effectively prevent 
out-of-scope data from reaching the core model, which is an important aspect in real-world usage 
(avoiding unnecessary computations and potential false results on invalid data). 

6. Summary of Test Results 

We summarize the test results of the signature verification system as follows: 

 Accuracy: The system achieved about 94% accuracy on the held-out test signatures, 
confirming that the CNN learned a strong general model of genuine vs forged signatures. 
Most genuine signatures were correctly authenticated, and most forgeries were correctly 
detected. 

 Precision and Recall: The precision of ~95% indicates that when the system labels a 
signature as “genuine,” it is very likely to be correct (few forgeries slip through). The recall 
of ~94% shows that the majority of true genuine signatures are recognized as such (few 
genuine signatures are mistakenly flagged as forgeries). These high precision and recall 
values are desirable for a verification system – they mean it is both accurate and reliable, 
minimizing both types of error. 

 False Acceptance/Rejection: On our test, FAR was approximately 0.06 (6%) and FRR 
around 0.04 (4%). Depending on the application’s security requirements, the operating 
threshold of the system can be tuned to lower the FAR even further (at the cost of slightly 
higher FRR). For instance, if we adjust the threshold to be more conservative, we observed 
FAR could be brought down to 2% while FRR rose to about 6%. In critical applications 
like banking, one might favor a very low FAR to prevent fraud, whereas in a less critical 
setting, a low FRR might be more convenient for users. Our system allows such threshold 
adjustments. 

 Robustness of Input Validation: During testing, 100% of non-PNG inputs were rejected by 
the system, and 100% of non-signature images (deliberately tested as false inputs) were 
flagged as invalid. This means the pre-processing and validation pipeline effectively filters 
out bad inputs. For example, when a test user accidentally tried to use a .jpg image, the 
system did not proceed until a .png was provided. And when testers tried to submit an 
image of random doodles or a photograph of text, the system correctly refused to classify 
it as a signature. This validation success is important because it ensures that the reported 
accuracy is truly reflecting signature classification performance, not skewed by handling 
of improper data. 
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 Efficiency: The trained model is lightweight (on the order of a few million parameters, 
making the file size for the model a few megabytes) and predictions are fast. On a standard 
CPU, each signature verification took under 0.1 seconds after the image was preprocessed. 
With GPU acceleration, training the model (with a dataset of a few thousand images) took 
only a few minutes per epoch. This suggests that the system can be feasibly used in real-
time applications. For instance, a bank teller could scan a signature and get a verification 
result almost instantaneously, or an online application could verify a signature upload 
within a second or two. 

 Limitations observed: Some failure cases provide insight for future improvement. The 
forgeries that fooled the system tended to be those where the forger had a very similar 
handwriting style to the genuine signer or had practiced the signature extensively. These 
are edge cases that challenge even human experts. On the other side, the genuine signatures 
that were rejected were usually those that looked unusual compared to the user’s samples 
(perhaps a hurried signature or one with a very different stroke order). Such issues might 
be addressed by obtaining more training samples per user or implementing an adaptive 
learning mechanism that can incorporate new samples over time. We also note that our 
current system focuses on static image comparison; integrating dynamic information (if 
available, like stroke order in an online setting) could further enhance verification 
accuracy. 

Conclusion 

In this paper, we proposed a deep learning-based offline handwritten signature verification system 
combining CNN models with strict input validation. The system ensures data integrity through 
PNG-only enforcement and content checks, improving classification reliability. Our CNN 
effectively learns signature features, achieving mid-90% accuracy and low false 
acceptance/rejection rates. Efficient preprocessing and data quality standardization proved crucial 
to enhancing model performance. Real-time processing capability makes the system suitable for 
practical applications across finance, education, and legal sectors. Potential extensions include 
training with simulated forgeries, GAN-based augmentation, or incorporating online (dynamic) 
signature inputs. The system could also evolve through user-specific learning and defense against 
printed or replayed attacks. Future enhancements may involve liveness detection and secure 
webcam input validation. Overall, this solution demonstrates how domain-specific constraints and 
deep learning can be combined for trustworthy, scalable signature verification. 
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