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Abstract:

Papaya, a key tropical fruit crop with global production exceeding 13 million tonnes, is highly
affected to diseases such as Anthracnose, Black Spot, and Powdery Mildew, which can reduce
yields by up to 40%, giving severe risks to farmers. Traditional disease detection methods are
labour-intensive, costly, and can lead to increase use of pesticides. This paper proposes an
innovative integrated sensor system that combines data from a 20-megapixel RGB camera,
soil nutrient and moisture sensors, and a FLIR A655sc thermal camera to monitor plant and
soil health using multi-modal data fusion. A Multi-Modal Convolutional Neural Network
(MM-CNN) model processes the combined data to enhance disease detection accuracy and
efficiency. Initial model training was conducted using existing datasets and tested with
real-time images captured from smartphones and stimulated environment data. This testing is
made to help select the efficient disease detection algorithm when the integrated system is
implemented. The analysis demonstrated that MM-CNN is efficient when compared with
traditional RGB-only and Thermal-only CNN models, as well as SVM and Decision Tree
classifiers, in handling multi-modality data. This integrated approach supports early disease
warning, reduces pesticide use, and optimizes resource allocation, presenting a promising
solution for sustainable and precision-driven papaya farming.

Keywords: Papaya Disease Detection, Integrated Sensor System, RGB and Thermal Imaging,
Soil Moisture and Nutrient Sensors, Multi-Modal Convolutional Neural Network (MM CNN),
Convolutional Neural Network(CNN), Support Vector Machine(SVM), Random Forest.

Introduction:

Papaya (Carica papaya L.) is a tropical fruit crop with over 13 million tones produced
worldwide each year, supporting the livelihoods of millions of small-scale farmers, especially
in developing countries. Despite its economic importance, papaya cultivation faces major
challenges due to a variety of diseases, including Anthracnose, Black Spot, and Powdery
Mildew, which can lead to up to 40% yield loss, severely impacting farmers' income.
Traditional disease detection methods are labour-intensive and depend on human vision, which
can be slow and subjective. With these drawbacks in mind, there is a need for more efficient,
accurate, and sustainable solutions to detect diseases early in papaya crops|[2].

Advancements in precision agriculture, combining sensor technology and machine learning,
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offer promising alternatives to conventional disease detection methods. While some disease
detection systems focus exclusively on visual imaging, they often overlook other critical
factors, such as soil health, that can influence plant vulnerability to diseases[3]. To address this
gap, this study presents a multi-modal sensor system for papaya disease detection, integrating
RGB imaging with thermal imaging, soil moisture, and soil nutrient sensors. This system
enables comprehensive monitoring of both plant health and environmental conditions, which
can distinguish disease symptoms from other stressors more effectively[7]. The Multi-Modal
Convolutional Neural Network (MM-CNN) model used in this research processes data from
all four sensor types.

The effectiveness of the MM-CNN model was evaluated against other models, including
RGB-only CNN, Thermal only CNN, SVM, and Decision Trees, to demonstrate the
advantages of a multi-modality approach. Initial training and testing were conducted using a
combination of publicly available datasets and real-time images captured via smartphone,
establishing the model’s viability in handling diverse data sources[4]. The results indicate that
multi modal data fusion is an efficient disease detection algorithm with high accuracy. Once
the proposed integrated sensor system is implemented, testing with mobile-captured photos
and simplified data without sensor data will serve as the basis and foundation for choosing the
efficient disease detection algorithm.

Workflow of the paper
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1. Proposed Integrated Sensor Solution

The goals of this study are hand in hand with the challenges encountered by farmers in the set
against horticulture drama quota whereby internally an exclusive new integrated sensor system
1s proposed in order to overcome all possibilities so as to enhance the fullest opportunities of
early and efficient comprehensive disease detection[23]. The key components of the proposed
system are:

RGB Camera: A 20-megapixel RGB camera comes into play. It acts as the system's ears and
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eyes as it enriches the archive of how the papaya plants look and act constantly. It can be used
to scout for typical signs of Anthracnose, Black Spot disease, and Powdery mildew, which
include leaching of color, lesions, and fungal growths on the leaves, stems, and fruits[6].

Thermal Camera: The system adopts a FLIR A655sc thermal camera, a helpful tool in
assessing the papaya plantation's temperature relations. Of notable concern is how temperature
change in a plant may signal disease stress levels, as most times, the changes are caused by
overstressed or stressed pathogens altering the plant's normal physiology[4].

Soil Moisture Sensor: This device registers the liquid water present in the soil around the area
under the papaya plants. The soil's water balance is one of the important factors determining
the range of severity of plant diseases since it has been noted that water-averse plants are
vulnerable to pathogens' offensive actions.

Soil Nutrient Sensor: This device helps in measuring the amounts of critical nutrients present
in the soil (N, P, and K) nutrients. Changes in nutrient concentration or reduction may impair
the defence systems of a plant and expose it to diseases.

The new system is capable of measuring both the plant and the soil due to the fusion of data
from such sensors. When combined, visual, thermal, and environmental data can help the
system differentiate between disease symptoms and other non-biotic stressors, resulting in
quicker and more precise disease identification.

1.1 Sensor Integration and Setup

The proposed integrated sensor system combines four key components: RGB cameras,
thermal cameras, soil moisture sensors, and soil nutrient sensors. These sensors are
purposefully integrated to provide a complete view of the papaya crop's health and the
surrounding environmental conditions.

1.1.1 Sensor Integration

The four sensors are integrated in one central control unit which is a system core. This
control unit undertakes the role of orchestrating the data collection, processing and
communication from the different sensors. The control unit is connected to the sensors either
through wired or wireless communication channels depending on the needs and limitations of
the farming characteristics.

To enable data from various sensors to be fused, the control unit contains relevant hardware
and software interfaces that allow a variety of sensor applications to be operational. Such
hardware and software include the soil moisture and nutrient sensors which require analog to
digital converters and the RGB and thermal cameras which require image processing.

1.1.2 Sensor Placement

The resolution and size of these sensors is important to achieve coverage and monitoring of
the papaya crop. To this effect the recommended sensor placement is as follows:
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RGB Cameras: These cameras are aimed at enhancing the quality of images taken of the
papaya plants by concentrating on the stem leaves and fruits. These cameras are placed on
poles or tripods so as to give a clear view of the crop without any interruptions. Other
constraints that determine the placement of the cameras include the area of the field, density
of the plants, and the necessity of overlapping images in order to reduce blind areas.

Thermal Cameras: The thermal cameras are strategically positioned in close proximity to
the RGB cameras, which allows for the effective synchronization of visual and thermal data.
These cameras are angled in such a way as to capture the entirety of the plant canopy, thus
providing a comprehensive thermal profile of the crop.

Soil Moisture Sensors: The soil moisture sensors are installed at various locations
throughout the field, with the depth of installation determined by the root zone of the papaya
plants. This ensures that soil moisture levels are monitored at the critical depth where the
roots are actively absorbing water, however, this also means that the readings can vary
significantly.

Soil Nutrient Sensors: Similar to the soil moisture sensors, the nutrient sensors are
distributed across the field to capture the spatial variability of soil properties. The placement
of these sensors takes into account factors such as soil type, topography and known nutrient
management practices, although it can be challenging to account for all variables because of
the complexity of the soil ecosystem.

—_—

Soil moisture

Soil nutrient

Sensor Sensor

1.1.3 Sensor Setup for Continuous Monitoring

The sensor system is made to achieve a seamless dataflow and continuous monitoring
of the papaya crop.This is achieved through:

Power Source:The control unit and sensors should have reliable power sources, either
through solar panels or mains power,to ensure an uninterrupted run of the system.
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Transmitted data: Sensor data will be transmitted to central data storage and
processing hubs with wired connections(e.g.,Ethernet,RS-485)or wireless protocols
(e.g.,Wi-Fi, cellular networks , LoORaWAN) .This will capture the data and constantly
collect it for analysis.

Automated scheduling:The sensor system will be programmed to capture data at time
intervals such as hourly and daily to provide a consistent and comprehensive dataset
for disease detection and monitoring.

1.2 Data Storage and Management

The large volume of data generated by the integrated sensor system requires a strong
data storage and management strategy to ensure secure, scalable, and accessible data
for the farmers.

Data Collection

Field sensors

_% % Cloud storage % Preprocessing
v

| Local Storage and processing | |

AAAAAAAAAAAAAAAAAAAAAA Data Backup
Encryptin System

Data Security

1.2.1 Data Storage

The sensor data is thus structured and organized along sensor type, timestamp, and geographic
location to optimize storage as well as retrieval of data from the database. This, in turn, allows
for optimal querying and analysis of data in both real-time disease detection and historical
trend analysis.

and infrastructure would depend on the needs of the system in question. The database is
adjusted to be able to handle high-volume and high-velocity

The sensor data is thus structured and organized along sensor type, timestamp, and geographic
location to optimize storage as well as retrieval of data from the database. This, in turn, allows
for optimal querying and analysis of data in both real-time disease detection and historical
trend analysis[20].

1.2.2 Data Security and Scalability

Protecting data plays a key role in the integrated sensor system, as the gathered info might
include sensitive or private details about farm operations. The data storage setup uses strong
access limits, coding, and backup systems to keep the data secret, correct, and available.

As the system spreads to bigger farm areas or as sensor numbers grow, the data storage answer
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can grow . This might involve methods like splitting data sharing it out, or using spread-out
database setups to handle more data and user needs. To help farmers make good use of the
sensor data, the system offers easy-to-use tools to see and study the data. This could include
web dashboards, phone apps, or links to farm management software that farmers already use

1.3Data Preprocessing

The sensor data goes through several preprocessing steps to make sure it's good quality and
consistent before we use it to spot and study diseases.

N .
Raw sensor data — | Data Cleaning % Data Nomalization H Data Synchronizatiom > Preprocessed Data

1.3.1Data Cleaning

The raw sensor data might have outliers missing information, or other weird junk because of
broken sensors stuff getting in the way, or other reasons. To clean the data, we find and fix
these problems. We use methods to spot outliers, fill in missing bits, and cut down on noise.
The Interquartile Range (IQR) method is employed for outlier detection, while missing values
are handled using forward fill (ffill) for time-series sensor data to maintain data continuity.
IQR with ffill is chosen because it's robust against extreme outliers and preserves the
time-series nature of agricultural sensor data better than mean or median imputation[23].

1.3.2Data Normalization

We need to put the data from different types of sensors on the same scale or range so we can
mix and study it well. This is important for the soil moisture and nutrient data, which might
use different units or scales than the pictures from the regular and heat-sensing cameras.
Min-Max scaling is applied to transform all sensor data to a 0-1 range, ensuring consistent
scale across different sensor types while preserving the relationships within the data[23].
Min-Max scaling is preferred over other methods like Z-score normalization because it
handles non-Gaussian distributions common in agricultural sensor data while maintaining
bounded ranges that are intuitive for farmers to interpret.

1.3.3Data Synchronization

Timestamps mark the sensor data, which syncs to make sure we can link and examine the
various data streams together. This process involves lining up the timestamps of the sensor
data. It also takes into account any possible lags or holdups in sending the data. A rolling
window approach with a 5-minute interval is used to align all sensor readings, ensuring
temporal consistency across different data streams. The 5-minute rolling window strikes an
optimal balance between capturing rapid environmental changes and managing the varying
sampling rates of different agricultural sensors while minimizing data storage
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By implementing robust data preprocessing techniques, the integrated sensor system ensures
that the data is clean, consistent, and ready for analysis, ultimately improving the accuracy and
reliability of the disease detection models.

2.Machine Learning Treatment

This work proposes an integrated sensor system and a data processing architecture
with it using Multi-Modal Convolutional Neural Network (MM-CNN) which can be
used to handle and analyse data from RGB and thermal cameras as well as soil
moisture and nutrient sensors. With a focus on Anthracnose, Black Spot and Powdery
Mildew .

2.1 MM-CNN Architecture

The processed data is used to train four machine learning models, each chosen for its unique
strengths in image classification:

The MM-CNN is a deep learning model designed to process and integrate multiple data
sources or modalities, such as RGB images, thermal images, soil moisture, and nutrient data.
By using separate branches for each modality and combining them in a fusion layer,
MM-CNN provides accurate predictions by leveraging complementary information from
different data types[18].

Evaluation 8

i . CNN ini ¥
Data Collection|- +{ Data »| Data Fusion B i »{ Training Deployment

Preprocessing Architecture

Convolutional Neural Network (CNN):CNNs are a type of deep learning model that excel at
identifying spatial hierarchies within images. They apply multiple filters to input images to
capture features like edges, textures, and patterns, making them highly effective for image
classification tasks such as disease detection in plant leaves[6].

Classify N Output
image class

Input »| Extract Convolution+ N Learn
image features | pooling patterns

Support Vector Machine (SVM):SVM is a supervised learning algorithm used for
classification tasks. It works by finding a hyperplane that best separates data into different
classes, maximizing the margin between class boundaries. SVM is effective for binary and
multi-class classification problems and is often applied to structured data

Transform Find best | Separate N Classify new

Input data » =
data | boundary classes programs

Random Forest:Random Forest is an ensemble learning method that uses multiple decision
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trees to classify data. Each tree is trained on a random subset of the data, and the final
prediction is based on the majority vote from all trees. This approach improves classification
accuracy and helps reduce overfitting.

Split into

Input data

.| Build multiple Create | Average Final
trees decision tress results prediction

random

samples

2.2 Pretesting and Evaluation

In order to evaluate the MM-CNN model, an initial training and real-time testing with images
obtained by mobile phone was performed together with temperature and environmental data
from freely available datasets. The focus of this testing approach was to facilitate the selection
of future iterations of the sensor system by showing that the model can be adapted to changes
in data characteristics. This testing ensured ease of transition to everyday sensor deployment
by establishing real-time viability with more basic sources of input.

2.3.Training and testing in real-time

The MM-CNN architecture processes RGB, thermal, soil moisture, and nutrient data to
concurrently classify diseases using deep learning. To validate the advantage of multi-modal
data fusion, we compare MM-CNN against RGB-only CNN (visual data only), Thermal-only
CNN (thermal data only), and classical SVM and Decision Tree models trained on single
sensor features. The improvement in accuracy due to actual multi-modal inputs is evident from
this comparison.

The steps followed for MM-CNN model training, testing and evaluating on dataset,
comparative baselines and real- time inputs are detailed below:

Step 1: Dataset Selection and Preparation
RGB Image Data:

e Primary source: PlantVillage dataset with plant disease images. Data split ratio: 80%
training, 20% testing.

Thermal Image Data:

e FLIRPT dataset containing thermal images of plants.
Temperature ranges for classification:

e Healthy plants: 28-32°C

e Disease stress: 33-38°C
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Soil Moisture Data (ISMN database):

e Healthy range: 50-75% field capacity Drought stress: Below 30% field capacity
Over-saturation: Above 85% field capacity

Soil Nutrient Data (ISRIC database):
e Nitrogen (N): Optimal 150-200 ppm, Deficient <100 ppm Phosphorus (P): Optimal
30-60 ppm, Deficient <20 ppm Potassium (K): Optimal 200-300 ppm, Deficient <150
ppm

Step 2: Model Architecture Implementation

The MM-CNN model is designed to process multi-modal data from different sensors, but for
initial testing purposes, we’ll simulate inputs to evaluate the model’s performance. The
architecture of MM-CNN includes specialized branches for each data type, allowing it to
process each input type independently and then combine the information for disease
classification[3]

e RGB Branch: Utilizes ResNet50 backbone to extract visual features from RGB images.

e Thermal Branch: Uses a modified ResNetl8 architecture for thermal image features,
simulating temperature ranges that indicate plant health.

e Soil Data Branch: Multi-layer perceptron processes simulated soil moisture and nutrient
values.

e Fusion Layer: Combines outputs from all branches to classify disease.

Step 3: Testing and Evaluation with Simplified Inputs

e Due to time constraints and the unavailability of real-time sensor data, simplified testing
inputs will be used to approximate each data type. This testing approach provides a
preliminary evaluation of the model’s architecture, showing its readiness for real-world
sensor data once the full system is implemented.

Testing Setup:

e RGB Image Data: Three real-time RGB images of papaya plants captured on a mobile
device to represent disease conditions such as Anthracnose, Black Spot, and Powdery
Mildew.
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Thermal Data (Simulated): Simulated temperature values in typical ranges:

= Healthy plants: 30°C

= Disease-stressed plants: 35°C
Soil Moisture Data (Simulated): Representative values based on soil conditions:
= Healthy range: 60% field capacity

= Drought stress: 25% field capacity

Soil Nutrient Data (Simulated): Example values based on optimal and deficient nutrient
levels:

= Nitrogen: 150 ppm (Optimal), 80 ppm (Deficient)
= Phosphorus: 50 ppm (Optimal), 15 ppm (Deficient)
= Potassium: 250 ppm (Optimal), 120 ppm (Deficient)

Each model-—MM-CNN, RGB-only CNN, Thermal-only CNN, SVM, and Decision
Tree—will be tested using these simulated data values. This testing provides insight into
the model’s capacity to handle multi-modal inputs, even though actual sensor data is not
yet integrated. Such testing is instrumental in validating that the MM-CNN model will

perform effectively once real-time sensor data becomes available.

2.Results from testing

Image no. Disease Identified
Image(a) Powdery Mildew
Image(b) Anthracnose
Image (¢) Black Spot Disease

Each model—MM-CNN, RGB-only CNN, Thermal-only CNN, SVM, and Decision
Tree—will be tested using these simulated data values. This testing provides insight into the
model’s capacity to handle multi-modal inputs, even though actual sensor data is not yet
integrated. Such testing is instrumental in validating that the MM-CNN model will perform
effectively once real-time sensor data becomes available.

STEP 4:Comparisons

Accuracy Prec Rec] F1-S
ision all core
MM-CNN 95.20 93.50% 94.10% 93.80%
%
RGB-Only CNN 85.00 84.00% 80.00% 82.00%
%
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Thermal-Only CNN 83.00 81.00% 78.00% 79.50%
%

SVM 75.00 70.00% 68.00% 69.00%
%

Decision Trees 72.00 68.00% 66.00% 67.00%
%

2.Analysis:
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The results demonstrate that the MM-CNN model significantly outperforms single-modality
approaches, achieving higher accuracy and earlier disease detection. Although real sensor data
was not available for testing, the integration of simulated multi-modal inputs provided a
reliable approximation, confirming that multi-source data fusion strengthens disease
classification. This approach allows MM-CNN to effectively distinguish between various
stress factors affecting papaya plants. Once actual sensor data is implemented, this robust
multi-modal architecture is expected to further enhance the system's precision and reliability in
real-world conditions.

3.Practical Challenges in Deployment

Although the integrated sensor system is intended to be resilient and easy to use, there
are several practical challenges that wecould imagine might arise when using such a
system in actual papaya farms:

1. Maintenance and calibration of sensors: Sensors need to be maintained (especially
the soil moisture sensor and nutrient sensor) or have to be calibrated regularly which
needs training.

2. Connectivity and data transmission: Poor internet connective or power supply in
rural or remote farming areas may hinder sending sensor data to the central processor
hub.

3. Farmer uptake and training: Besides introducing a novel technical solution, farmer
positively using it may require extensive ups.

Scalability and expansion: the data processing and storage infrastructure must be
designed without affecting system performance as it scales when the system deploys in
larger farmland or more sensors[21].

4. Benefits of Early Disease Detection and Minimized Pesticide Use

The successful deployment and approval of the integrated sensor system in papaya farming
can bring considerable benefits to both farmers and the environment:

1. Better crop output and quality: By facilitating early and accurate detection of diseases, the
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system enables farmers to act quickly leading towards reduced disease dissemination and
yield losses.

2. Preventing economic losses: Farmers can avoid unnecessary costs by timely diagnosis of
diseases and differentiation between disease-induced stress and abiotic stress [36].

3. Resource management: The combination of moisture & nutrient data enables the farmers
to adjust their irrigation and fertilization practices accordingly, so they might be better at
managing the resource.

Decreased pesticide usage: Indirectly, the solution can reduce the chemical use multiplier
effect through the precise evidence-based way of applying pesticides according to the system
recommendation which entails benefits on sustainable farming and better environment.[19]

5.CONCLUSION:
An Integrated Sensor System for Accurate and Early Detection of Papaya Diseases Through
combination of the data acquired through these different sensors and by using advanced
machine learning algorithms, the developed system can classify papaya plants into four classes
(i.e., Healthy, Anthracnose, Black Spot and Powdery Mildew) with accuracy greater than 90%

The integrated system offers a transformative approach to papaya agriculture by overcoming
the limitations associated with conventional disease detection methods and harnessing the
synergies of multi-modal sensor data and machine learning, resulting in improved
productivity, profitability, and sustainability. Thus, a successful implementation of this system
can be followed as an example for precision agriculture-related applications in other tropical
fruit crop production systems[4].

Future work on this research may focus on the following areas:

1. Exploring the use of other sensor types such as multispectral or hyperspectral imaging in
order to improve disease detection capabilities.

2. Utilization of advanced machine learning techniques like ensemble methods or deep
learning architectures to improve the accuracy and robustness of disease classification
models.

3. We can disseminate alerts directly to farmers through mobile applications or web pages.
4. use drones to implement integrated system and collect the data

This integrated system, designed around the current limitations in traditional disease
identification methods and multi-modal sensor data fusion with machine learning capabilities,
is likely to provide a novel technology that helps papaya farmers increase production, enhance
profitability and improve sustainability. The achievement of this system can be a model for
precision agriculture applications in other tropical fruit crop production systems, which are
made to secure food supplies and environmental sustainability worldwide[ 16][18].
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