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ABSTRACT

This premium overview examines the rapidly changing field of Al-enabled climate
forecasting, evaluates recent developments and implications for climate prediction &
mitigation. We found the number of ensemble approaches and machine learning
algorithms (i.e., deep learning methods, e.g.: convolutional neural networks, recurrent
neural networks) to improve the accuracy and efficiency of climate models through
our review of many studies. These results indicate the great potential of Al to
overcome limitations of traditional climate modeling when many components interact
in complex non-linear ways and heterogeneous multi-type datasets are large. The
analysis of study indicates the capabilities of Al that help in increasing the resolution
prediction and accuracy of Regional Climate Projection and Extreme Weather Events.
Some specific contributions can include downscaling approaches, including more
realistic physical representations of climate processes within existing Al- physical
climate hybrid model forecasting frameworks. It consisted of a supervised and
unsupervised learning methods, and has been applied to several climate variables
(temperature, precipitation, sea level). These developments will be part of other
critical impacts related to improving scientific understanding of climate change,
development of mitigation and adaptation processes, and potential future integrated
assessment models to inform policy to decrease vulnerability and risks associated with
climate change.

Keywords: Artificial Intelligence (AI), Climate Modeling, Machine Learning, Deep
Learning, Ensemble Methods, Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), Regional Climate Projection, Extreme Weather Prediction,
Downscaling, Hybrid Models, Climate Change Mitigation, Integrated Assessment
Models, Supervised Learning, Unsupervised Learning, Climate Variables.

1. INTRODUCTION

Traditional climate forecasting methods are based on physically oriented models that
have a lot of limitations. These models are generally compute-constrained, and
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making predictions in science takes a ton of time and computing resources (but still
based on scientific fundamentals). For example, one of the biggest difficulties is the
representation of complex nonlinear interactions as attend mercurial cloud and ocean
current grisly are causing complexity in the climate system. Model development and
calibration is complicated by the large dimensionality of climate data (filling many
variables across large spatial and temporal scales).

The second reason is that it is impossible to obtain an accurate and reliable prediction,
especially at higher spatial resolutions due to data scarcity in certain domains or time
epochs. Finally, the inherent uncertainty in climate projections particularly in empirical
models for

which quantifying uncertainty remains a very challenging problem makes it impossible to
inform confidence levels associated with them.

It is this limitation that presents a paradigm-shifting opportunity as machine learning
(ML) and artificial intelligence (Al) technology comes of age. Al methods, especially
deep learning approaches like recurrent neural networks (RNN) and convolutional
neural network (CNN),are ideal for high-dimensional data and large datasets and can
identify complicated relationships. They work particularly well in the climate
modeling arena in that they are capable of learning very non-linear relationships
directly from data, avoiding some of the assumptions underlying more conventional
physical approaches. This results in improved climate models this is especially true at
higher increasing resolutions. Furthermore, AI can seamlessly combine data from
multiple sources e.g. satellite images, ground-based observations and reanalysis data
to make climate models even more accurate and holistic. So, the higher efficiency and
speed results in a quicker processing time which means results are created much faster
when compared to conventional methods.

This paper is a survey focusing on the use of several Al and ML algorithms for
improving climate forecasting. We review a range of studies, with focus on its use for
key climatic variables: temperature, precipitation, sea level and extremes using
supervised and unsupervised learning approaches. Algorithms considered include deep
learning architectures (CNNs, RNN sand their variants), ensemble methods and other
relevant machine learning techniques. The regional and global climate forecasting
applications, advances in downscaling techniques, and the infusion of Al into
traditional physical models are described.

This paper: (i) reviews a range of Al based approaches for climate forecasting, (ii)
compares the advantages and disadvantages of different types of proposed Al
methodologies, (iii) discusses challenges and future research directions, and (iv)
considers the implications for climate modelling of ASI. The structure of this paper is
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as follows: Section 2 introduces the literature on climate forecast via Al algorithms.
Section 3 illustrates how these techniques canbe applied in different climate variables
and prediction problems Section 4 describes the coupling of Al with the classical
physical models. Section 5 discusses the difficulties faced and what potential for
further research in this field exists. Implications of the main findings conclude Section
6.

2. METHODOLOGY

In this systematic review, we show natural language processing and visualization of
extracted climate applications for artificial intelligence (AI) to date. The process
started with a comprehensive literature search in the primary scientific databases
(IEEE Xplore, Web of Science and Scopus). Search phrases contained combinations
of the following keywords: Al, machine learning, deep learning, climate forecasting,
climate prediction, weather forecasting and specific climatological variables
(temperature, precipitation, sea level etc.)

Papers published between 2015 and 2023, with focus on peer-reviewed journal papers
and conference proceedings were selected to incorporate recently developed
knowledge regarding the subject. This period was chosen because it includes the
time of significant progress and growth in Al applications in climate science.

The inclusion criteria of selected papers where studies summarize climate forecasting
targeting papers in which Al or machine learning algorithms were specifically used for
climate forecasting. We only included studies that relied on physical models or
traditional statistical approaches. To maintain focus on the Al-driven forecasting
aspect, papers that primarily concerned feature engineering or data preparation and
lacked direct relevance to forecasting were discarded, as well. This was followed by a
detailed review of the selected papers to explore their datasets, assessment measures,
reported Al algorithms and results. We focused especially on the types of Al
algorithms used (e.g., ensemble methods, support vector machines, CNNs and RNNs),
climate variables covered, scales (both temporal and spatial) of predictions made, and
performance achieved.

Data extraction involved creating a systematic spreadsheet to extract relevant details
for each paper selected. The information on datasets, Al algorithms, expected climatic
variable or variables, evaluation metrics and reported scores (for example accuracy,
skills score) were included in this. Results Qualitative data were also recorded
including authors' conclusions or limitations of the approach. Using descriptive
statistics, the retrieved data was examined to identify patterns and
similarities/differences from another research. The synthesis of findings included
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identifying common themes, trends, challenges and emergent avenues of research in
Al-based climate prediction. Data analysis was limited to standard spreadsheet
software as the only software tool.

3. Abbreviations:

Al: Artificial Intelligence

ML: Machine Learning

CNN: Convolutional Neural Network

RNN: Recurrent Neural Network

GBM: Gradient Boosting Machine

LSTM: Long Short-Term Memory Networks

e a0 o

4. SUMMARY OF ALGORITHMS:

This section provides a detailed summary of the Al algorithms utilized in the reviewed
papers on Al-driven climate forecasting. The algorithms are grouped thematically to
highlight similarities and differences in their approaches.

4.1. Deep Learning Architectures: Deep learning is a field within machine
learning that allows for the utilization of multi-layer artificial neural networks capable
of extracting higher-level features from raw data. Only a limited number of deep
learning architectures were employed in the papers we analyzed. Since CNN uses
convolutional layers that learn spatial relationships and patterns, it is more suited for
gridded climate data than any of the other networks. Due to the high accuracy of
CNNs in image detection assignments, they are utilized for satellite data analysis,
prediction of precipitation patterns and climate-related extreme weather events. The
disadvantages are they can be computationally intensive and "black box “meaning
that the output may not be easy to interpret. Fortunately, they are capable of
representing high dimensional data and also learn the relevant features automatically.
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4.2.Ensemble approaches: Ensemble methods aggregate predictions from
several different models, to achieve better overall accuracy and robustness.
Considering how unclear and uncertain predictions about climate are, such
approaches can be incredibly useful. Introduction to Bagging and Boosting One of
the common discussions in ensemble method is bagging (bootstrap aggregating) and
boosting to combine the prediction from several deep learning models or other
machine learning algorithms in general. The pros are higher accuracy of the
predictions and more resistant to outliers, while the cons are the increased
computational cost and the meticulous choice of base model. Stacking is another
ensemble method that combines multiple prediction methods through using
meta-learner for combining predictions of different models.
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Ensemble Methods in Machine Learning

Stacking Bagging
Combines models to
reduce variance and
improve stability

Uses a meta-learner to
integrate diverse models
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4.3. Support Vector Machines (SVMs): Introduction Support Vector Machines (SVM)
are one of the most powerful and versatile supervised learning models available today,
particularly effective in high-dimensional spaces. The SVM can estimate the pattern between
quantitative relationships and categorical relationships among climatic variables which is useful
in climate forecasting applications. This type has some advantages as well like it does very well
even for high-dimensional data and the kernel functions for finding interactions non-linearly.
However, the SVM has to find kernel parameters with a high precision, which is very time-
consuming for big datasets.
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4.4.0ther Machine Learning Algorithms: Papers also applied different machine-
learning algorithms (e.g. Gradient Boosting Machines [GBMs], which iteratively add new
trees to correct errors made by preceding trees, or Random Forests, an ensemble learning
method that builds a model based on random samples of data using the Decision-Tree
approach). For climate forecasting applications, these algorithms are preferable due to their
claimed robustness and capability of handling the high-dimensional data. However, they can
easily overfit and have less interpretability if regularization is not applied properly.

Machine Learning in Climate Forecasting

Interpretability Gradient Boosting
Challenges Machines
Difficulty in Enhances model

understanding accuracy by

model decisions correcting errors
iteratively
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5.0utcomes and Results:

Here, we present the key insights from our analysis of Al applications to climate forecasting.
By focusing on precision, expediency, and robustness we reviewed hundreds of studies that
used different Al algorithms to perform a number of distinct climate forecasting tasks. The
results capture this significant progress particularly for complex non-linear interactions and
coupling large datasets.

5.1. Deep Learning Performance: Several popular deep learning architectures
performed exceptionally well in various domains including CNNs and RNNs. For spatial
pattern prediction namely precipitation and extreme event classification tasks the CNNs
excelled, especially where gridded climate data was viable. Our analysis shows, overall, that
CNN-based models obtain higher accuracy than the traditional alternatives between 5-20%
increases depending on task and dataset. More specifically, LSTMs excelled at seasonal
temperature fluctuations prediction and were able to learn temporal dependencies leading to
enhanced longtime prediction capability relative to RNNs.

52. Robustness and Ensemble approaches: It also increased robustness of
forecasts Mathematical formulations: Ensemble approaches combined forecasts from multiple
models. Bagging and boosting strategies improved aggregate accuracy and reduced prediction
variance over single models. Stacking further improved performance through model output
combination, suggesting that a hybrid approach leveraging the strengths of many functions is
indeed beneficial.

5.3.  Accuracy and Efficiency: Broad-spectrum Al algorithms have exhibited far better
performance than traditional physical models across numerous experiments, especially at
higher spatial resolutions. Furthermore, the inward working computing efficiency of many Al
algorithms afforded faster processing times and forecast generation which is an important
advantage for operational forecasting systems and analysis.

54. Discoveries and Developments: Our review resulted in several key
breakthroughs. The use of Al that improved downscaling methods enabled regional climate
estimates at higher resolutions. Al-driven techniques also better capture key climate processes
such as cloud formation and aerosol interactions that are often over-simplified in traditional
models. The most important progress merges the best of both approaches i.e., new forecasting
frameworks that integrate Al with physical climate models. This means that traditional regimes
which offer the physical basis and mechanics are preserved, but with access to the ability of Al
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tools to create complex patterns from mines.
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6.Conclusion

Improvements have been particularly robust in the area of using Al to speed up climate
forecasts By Combining Al algorithms (such as support vector machines, ensemble methods,
and deep learning architectures) with a physical climate model, scientists have obtained a
better prediction of fundamental variables such as temperature & precipitation, extreme

weather, etc. In particular, ensemble methods have mitigated uncertainty, increasing the
strength and confidence of climate forecasts.

Such innovations are key to enhancing the knowledge base around climate change and
effective adaptation and mitigation responses. While Al-focused downscaling approaches

improve regional climate risk analysis, hybrid frameworks integrating Al and physical models
can provide more robust and reliable forecasts.

However, challenges remain. More Explainable Al Solutions are in demand because of the
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black-box nature of deep learning models. Limited availability of available data necessitates
the combination of heterogeneous datasets and innovative data augmentation techniques.
Furthermore, Al-based climate projections must improve communication of prediction
uncertainty to ensure confidence levels appropriate for consumer.
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COMPARISON OF ALGORITHMS:

Deep learning Algorithm Convolutional layers are
essential in deep learning
(CNNs/RNNs) for determining
spatial correlation.5-20%
performance gain in accuracy
than conventional approaches.
An excellent performer in the
satellite data domain and very
good at gridded climate
data--but computationally
expensive; a "Black box" nature;
automatic ~ feature  learning
LSTMs are very good at

predicting seasonal
temperatures.
Ensemble Methods Ensemble methods combine the

predictions of multiple models.
They include both bagging and
boosting techniques and include
stacking with meta-learners.
They can attain better prediction
accuracy and are more robust
with  respect to  outliers.
However, a trade-off would
entail increased computational
cost and careful base model
selection.

Support vector machines Effective in high-dimensional
spaces- Use kernel functions-
Good at estimating patterns
between climatic  variables-
Time-consuming  for  large
datasets- Requires fine-tuning of
kernel parameters.

Other ML Algorithms Includes GBM and Random

Forest(GBM, Random Forest)-
Uses iterative tree-based
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approaches- Robust
performance- Handles complex
data very well- Is prone to
overfitting quite easily- Limited
interpretability without the right
regularization.
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