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Abstract

This paper presents an interpretable deep learning approach for brain tumor classification using
Vision Transformers (ViT). The study emphasizes not only classification performance but also
explainability by visualizing attention maps. A brain MRI dataset with imbalanced classes was
used, and data augmentation was applied to improve generalization. The proposed ViT-based
model was trained and evaluated using standard metrics, including Accuracy, Precision, Recall,
F1-Score, and AUC/ROC. Furthermore, attention map visualization demonstrates how the model
focuses on tumor regions, enhancing trustworthiness and clinical usability. Experimental results
indicate that the ViT architecture achieves high classification performance with an accuracy of
94% while providing interpretable outputs that support decision-making in medical imaging
whereas the CNN baseline model achieves 80% accuracy.

Keywords
Brain Tumor Classification, Vision Transformer, Explainable AI, Attention Maps, Medical
Imaging, MRI

Introduction

Brain tumors are life-threatening conditions requiring timely diagnosis and effective treatment.
Medical imaging, especially MRI scans, plays a crucial role in early detection. Traditional
machine learning methods rely heavily on handcrafted features, limiting their ability to
generalize across diverse tumor patterns. Recent advances in deep learning, particularly
Convolutional Neural Networks (CNNs), have significantly improved classification accuracy.
However, CNNs often lack interpretability, a critical requirement in clinical applications. Vision
Transformers (ViTs) have emerged as powerful alternatives to CNNs, leveraging self-attention
mechanisms to capture global dependencies in images. Importantly, the attention maps generated
by ViTs provide a means for explainable Al (XAI) by showing which image regions influenced
the model’s decision. In this study, we propose an interpretable brain tumor classification model
using ViTs and visualize its attention maps to evaluate the trustworthiness of predictions.
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Research Objectives and Methodology

The proposed methodology adopts a structured approach for brain tumor classification using
MRI scans. The dataset comprises brain MRI images encompassing multiple tumor classes, with
an inherent imbalance in class distribution. To address this, data preprocessing was performed.
The core model architecture employed is a fine-tuned Vision Transformer (ViT). Model
performance was evaluated to ensure a comprehensive understanding of predictive capability.
Furthermore, interpretability was integrated into the framework by extracting attention maps
from the trained ViT, thereby enabling visualization of the model’s focus regions and offering
explainable insights into the decision-making process.

2. Literature Survey

The paper [1] proposes hybrid Vision Transformer (ViT) and Deep CNN-based models for
multi-class classification of MRI brain tumor images. It also integrates Explainable Al (XAI)
techniques to enhance model transparency and clinical trust. Paper [2] presents a comprehensive
survey on the use of Vision Transformers (ViTs) and Explainable Al (XAI) in brain tumor
detection and classification. The paper [3] introduces an optimized hybrid deep learning
approach incorporating attention mechanisms for accurate brain tumor detection. Paper [4]
proposes BioTransX, a bi-former-based hybrid model employing bi-level routing attention for
brain tumor classification. The paper [5] introduces EFFResNet-ViT, a fusion model combining
convolutional networks with Vision Transformers for medical image classification. It leverages
explainable Al techniques to provide transparency and improve clinical decision support. The
paper [6] presents a hybrid model combining Vision Transformers and convolutional networks
for multimodal glioma segmentation in brain MRI. The paper [7] evaluates the effectiveness of
visual explanations derived from attention maps in transformer-based medical imaging models.
The paper [8] explores the use of Vision Transformers combined with transfer learning for brain
disease detection.

3. Methodology

To achieve the objectives of predicting customer churn using machine learning techniques and
comparing their effectiveness, a systematic methodology is followed. This methodology includes
several key steps: data collection, data preprocessing, feature selection, model training and
evaluation, hyperparameter tuning, and comparative analysis. Each step is crucial in ensuring the
accuracy and reliability of the predictive models.
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4. Experimental Setup and Implementation

The experimental setup was implemented in Python using PyTorch and TensorFlow libraries.
The implementation followed a structured workflow. First, the MRI dataset containing 253
images (with 155 labeled as “Yes” tumor and 98 labeled as “No” tumor) was loaded and
preprocessed. To improve generalization, several data augmentation techniques were applied,
including Resize, Horizontal Flip, Rotation, Random Brightness/Contrast, Elastic Transform,
Coarse Dropout, and Normalization. The Vision Transformer (ViT) model was then trained on
the training set with hyperparameters EPOCHS = 15, learning rate = le-4, and weight decay =
le-6, achieving a best validation accuracy of 0.9412. The model was subsequently evaluated on
the test set using standard performance metrics. Finally, attention maps were generated for
sample test images, where Explainable Al techniques were applied to interpret the results,
providing insights into the model’s decision-making process.

Tarer Desected

Fig.1(a) Example MRI images from the dataset. (b) MRI images post data augmentation

5. Result Analysis

The ViT model achieved strong performance on the classification task. Confusion Matrix is
summarized in Table 1. The performance comparison between the CNN Baseline and ViT + XAI
models highlights significant improvements in classification accuracy. For the CNN Baseline,
the model achieved 15 True Negatives (TN) and 17 True Positives (TP), but it also produced 5
False Positives (FP) and 3 False Negatives (FN), indicating moderate misclassification rates. In
contrast, the ViT + XAI model showed stronger performance with 18 TN and 30 TP, while
reducing errors to only 2 FP and 1 FN. Overall, the ViT + XAI approach outperformed the CNN
Baseline, offering higher correct detections (both TN and TP) and fewer misclassifications (FP
and FN), demonstrating its superior reliability and explainability in classification tasks.
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Table 1: Confusion Matrix

True Negative

False Positive

False Negative

True Positive

CNN Baseline

15

5

3

17

ViT + XAl

18

2

1

30

The fig 2(a) shows the training and validation learning curves for model performance across 15
epochs. Fig 2(a) left (Model Accuracy): Training accuracy steadily increases with epochs,
starting around 0.6 and reaching nearly 0.9 by the end. Validation accuracy also improves,
fluctuating slightly across epochs but generally follows the same upward trend, indicating good
generalization with minor variations. Fig 2(a) right (Model Loss): Training loss decreases
consistently from above 1.2 to below 0.3, while validation loss also declines with some
fluctuations, stabilizing around 0.4-0.5. This suggests effective optimization without significant
overfitting. The learning curves indicate that the model achieves progressive accuracy gains and
decreasing loss for both training and validation, showing strong learning behavior and reliable
performance.

The fig 2(b) displays the Receiver Operating Characteristic (ROC) curve for model evaluation.
The orange curve represents the ROC performance of the model, achieving an Area Under the
Curve (AUC) score of 0.971, which indicates excellent classification capability. The blue dashed
line represents the No-Skill classifier (random guess), positioned diagonally with an AUC of 0.5.
The ROC curve of the model lies significantly above the No-Skill line, particularly maintaining
high True Positive Rates (TPR) while keeping False Positive Rates (FPR) very low. The model
demonstrates strong discriminative power and high reliability in distinguishing between classes,
with near-perfect performance as reflected by the AUC value of 0.971.
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Fig. 2: (a) Training vs. validation accuracy/loss curves. (b) ROC curve showing model
discrimination ability.

Comparative results are presented in table 2. To benchmark the performance of the proposed
Vision Transformer model has been compared it with a baseline CNN-based approach
implemented. The CNN Baseline model achieved an overall accuracy of 80%, with a precision
of 83% for the ‘No’ class and 77% for the ‘Yes’ class. Its recall values were 75% (No) and 85%
(Yes), while the Fl-scores were 79% (No) and 81% (Yes). This shows balanced but moderate
performance, though it lacks interpretability. The ViT + XAI model significantly outperformed
the baseline with an accuracy of 94%. It attained 95% precision (No) and 94% precision (Yes),
along with 90% recall (No) and 97% recall (Yes). Its F1-scores were 92% (No) and 95% (Yes).
Importantly, it provides interpretability through attention maps, enhancing clinical trust. The ViT
+ XAI model not only improves classification performance across all metrics but also integrates
explainability (attention maps), making it more reliable for medical decision support compared
to the CNN Baseline.

Table 2: Comparative performance between CNN baseline and proposed ViT model.
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Model | Accu [ Precision | Precision | Recall | Recall | F1-Scor | F1-Score | Interpret

racy | No Yes No Yes e Yes ability

No

CNN 80% | 83% 77% 75% 85% 79% 81% NA
Baseline
ViT + 94% | 95% 94% 90% 97% 92% 95% Attention
XAl Map

The attention maps in fig 3 show that the ViT model attends to the tumor regions, validating that
its decisions align with medically relevant areas. The fig3 (left) illustrates the use of explainable
Al with attention visualization for brain tumor detection in MRI scans. The left image shows the
original MRI scan, where the tumor region is visible. The middle image presents the attention
heatmap, highlighting the regions most influential in the model’s decision-making. The red and
yellow areas correspond to high attention, correctly focusing on the tumor region. The right
image overlays the heatmap on the original MRI scan, providing a superimposed view that
clearly aligns the model’s focus with the actual tumor location. The model correctly predicted
“Yes Tumor” (true positive) and the attention map demonstrates it.

True: No Tumor | Predicted: No Tumor

True: Yes Tumor | Predicted: Yes Tumor

Fig. 3: Attention map visualization highlighting tumor regions.(left)yes tumor.(Right)No Tumor
The fig 3 (right) demonstrates explainable AI visualization for a correctly classified negative
MRI case (no tumor). The left image is the original MRI scan showing no visible tumor. The
middle image displays the attention heatmap, where highlighted regions (in red/yellow) indicate
areas considered by the model during prediction. These focus points are scattered but do not
correspond to tumor-like structures. The right image overlays the heatmap on the MRI scan,
confirming that the model examined relevant regions yet correctly determined the absence of a
tumor. The model accurately predicted “No Tumor” (true negative), and the attention map
reinforces interpretability by showing that the decision was made without incorrectly focusing on
non-tumor regions.

Conclusion
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This study demonstrates that Vision Transformers provide not only high classification accuracy
for brain tumor detection but also interpretability through attention maps. The visualizations
enhance trust in automated diagnostic systems by confirming that the model focuses on clinically
significant tumor regions. Future work includes expanding the dataset with multi-center MRI
scans, exploring hybrid ViT-CNN architectures, and integrating advanced interpretability
techniques. Additionally, real-time deployment in clinical workflows can be investigated to
evaluate the practical utility of the proposed model.
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