Analysis of data acquisition methods for Computational Learning

Usha Muniraju*1, SWETHA N2, Kavya H3, Nameera Zuha4, Madhushree MG 5, Pratiksha 6

Department of Computer Science Engineering, East West Institute of Technology Visvesvaraya Technological University, Belgaum-50018

Swethan@gmail.com, kavyareddyh03@gmail.com, zuhanameera@gmail.com, madhushreemg8@gmail.com, pratikshahosamani18@gmail.com

Keywords	Abstract			
Data Evaluation,	The analysis of data acquisition has significantly transformed the field of			
data lake,	computational learning. One crucial aspect of this transformation is the process of			
computational learning, Data	data acquisition, which plays a vital role in the field of computational learning			
sources,	models. This study paper provides an essential overview of data acquisition			
Data preprocessing,	methods in the framework of Big Data-AI integration. We first discuss the			
Data sampling, Data labeling,	importance of data acquisition in computational learning and highlight the issues			
Data annotation,	and openings presented by Big Data. Next, we present a detailed analysis of			
Data quality,	various data acquisition techniques, including traditional methods, crowdsourcing,			
Data augmentation,	and data augmentation. We also examine the effect of data quality, quantity, and			
Data imbalance,	diversity on the throughput of computational learning models. Furthermore, we			
Data selection,	discuss ethical considerations and privacy issues related to data acquisition. Hence,			
Data storage,	we deduce with future research paths and recommendations for enhancing data			
Data retrieval	acquisition practices in the era of AI integration			

Corresponding author: usharaj.m@gmail.com

INTRODUCTION

In recent years, the integration of Big Data and Artificial Intelligence (AI) has revolutionized the field of computational learning, enabling significant advancements in various applications such as image recognition, natural language processing, and predictive analytics. At the core of this transformation lies the procedure of data acquisition, which plays a fundamental role. The measurements and variety of data collected directly affect the throughput and authenticity of these models.

Data acquisition in the notion of computational learning has evolved rapidly with the arrival of Big Data technologies and AI algorithms. Traditional methods of data acquisition, such as manual data preprocessing and surveys, have been augmented and in some cases replaced by more automated and scalable approaches, including web scraping, sensor networks, and crowdsourcing platforms. These innovations have not only facilitated the collection of large volumes of data but also enabled the extraction of valuable insights from various sources such as social media, IoT devices, and online platforms.

Despite the numerous benefits of Big Data-AI integration in computational learning, several challenges and considerations arise in the framework of data gathering. Ensuring the quality and accuracy, addressing privacy and ethical concerns, and handling the throughput and efficiency of data acquisition processes are some of the

Volume: 2	Issue: 4	June 2024
-----------	----------	-----------

key obstacles faced by scholars in this field. Moreover, the increasing complexity and diversity of data sources pose additional challenges in terms of data acquisition, preprocessing, and analysis.

This study paper helps to provide you an overview of data acquisition methods with respect to Big Data-AI integration for computational learning. We discuss the importance of data acquisition in computational learning and highlight the complications and scope presented by Big Data. We present adetailed analysis of various data acquisition techniques, including traditional methods, crowdsourcing, and data augmentation. Furthermore, we examine the affect of data quality, quantity, and diversity on the outcome of computational learning models. We also discuss ethical considerations and privacy issues related to data acquisition in the era of Big Data and AI integration.

Overall, this study paper helps to provide valuable insights and recommendations for enhancing data acquisition practices in the field of computational learning, with a focus on the integration of Big Data and AI technologies.

RESEARCH LANDSCAPE OF DATA ACQUISITION FOR COMPUTATIONAL LEARNING

Data acquisition is a critical aspect of computational learning, influencing the quality, diversity, and quantity of data used to train and develop models. This research landscape explores the various features of data acquisition, highlighting contributions from both the computational learning and data management communities. From the perspective of computational learning, data acquisition involves sourcing, processing, and preparing datasets for grounding and examining. Methods such as manual data entry and surveys have been supplemented by automated techniques including web scraping, sensor networks, and crowdsourcing. Computational learning researchers emphasize the importance of data quality, quantity, and diversity in improving model performance and generalization. Alternatively, the data management community brings a wealth of knowledge and techniques to the field of data acquisition. Data management researchers focus on efficient data storage, retrieval, and processing techniques, which are crucial for handling large-scale datasets in computational learning applications. They also focus on issues related to data integration, preprocessing, and cleaning, ensuring that datasets are suitable for computational learning tasks. The intersection of computational learning and data management is marked by several key research areas. For example, data management methods such as indexing, compression, and data summarization can influence the efficiency and scalability of data acquisition for computational learning. Additionally, data privacy, security, and ethical considerations are paramount in both communities, highlighting the value of responsible data acquisition practices.

Fig. 1: A high level research landscape of data collection for machine learning. The topics that are at least partially contributed by the data management community are highlighted using blue italic text. Hence, to fully understand the research landscape, one needs to look at the literature from the viewpoints of both the machine learning and data management communities.

The Journal of Computational Science and Engineering. ISSN: 2583-9055

Volume: 2

To fully understand the research landscape of data acquisition for computational learning, it is required to include the contributions from both the computational learning and data management communities. While computational learning researchers focus on algorithmic advancements and model performance, data management researchers provide valuable insights into data storage, processing, and handling methods that are mandatory for enabling large-scale computational learning applications.

In conclusion, the research landscape of data acquisition for computational learning is multifaceted, with contributions from both the computational learning and data management communities. By integrating perspectives from both fields, researchers can gain a extensive grip of the challenges and liberty in data acquisition for computational learning, leading to advancements in both theory and practice.

The decision structural outline for data acquisition is a valuable tool that helps guide researchers and practitioners through the process of acquiring, labeling, and improving data for computational learning models. The flow chart begins with a fundamental question: "Does Sally have enough data?" This initial step is crucial, as the availability and sufficiency of data directly impact the success of computational learning projects. If the answer to this question is "Yes," the flow chart suggests proceeding to the next step, which is to consider techniques for improving existing data or models. This may involve data augmentation techniques such as duplication, noise addition, or perturbation to enhance the diversity and quality of the dataset.

If the answer to the initial question is "No," the flow chart provides a series of follow-up questions to guide the selection of appropriate techniques for acquiring data. These questions address key considerations such as the availability of labeled data, the feasibility of collecting more data, and the possibility of using alternative data sources. For example, if there is less no of named data, the flow chart suggests exploring techniques such as self-learning or crowdsourcing for data labeling. Self-learning includes repeatedly training a model on a small part of labeled data and then using that model to label more data, gradually expanding the labeled dataset. Crowdsourcing, on the other hand, involves outsourcing data labeling charge to a huge number of workers through online platforms. It is necessary to note that structural outline provides a high-level outline and fails to cover all the details discussed in the survey. For instance, the survey discusses in detail the combination of self-learning and crowdsourcing techniques for data labeling, in addition to the challenges associated with assessing the sufficiency of labels for self-learning. Furthermore, the flow chart acknowledges that some questions, such as "Enough labels for self-learning?" may not have straightforward answers and may require a deep analyzation of the application and data. In such cases, researchers and practitioners are encouraged to delve into the specifics of their particular use case to illuminate decisions. Lastly, the structural outline in the fig.2 highlights that there are techniques specific to distinct types of data, such as images and text, which are detailed in the body of the paper. This emphasizes the importance of considering the characteristics of the data when selecting data acquisition techniques, as distinct types of data may require different approaches.

Volume: 2

Fig. 2: A decision flow chart for data collection. From the top left, Sally can start by asking whether she has enough data. The following questions lead to specific techniques that can be used for acquiring data, labeling data, or improving existing data or models. This flow chart does not cover all the details in this survey. For example, data labeling techniques like self learning and crowdsourcing can be performed together as described in Section 3.2.1 Also, some questions (e.g., "Enough labels for self learning?") are not easy to answer and may require an in-depth understanding of the application and data. There are also techniques specific to the data type (images and text), which we detail in the body of the paper.

The running example of data acquisition in a smart factory setting illustrates a common challenge faced in computational learning applications: the availability of sufficient and high-quality training data. In this example, the smart factory produces various images of product components, which need to be classified as either normal or defective using a convolutional neural network (CNN) model.

The first step in this process is to collect a dataset of images representing both normal and defective product components. This dataset serves as the training data for the CNN model. However, in many cases, especially in specialized or niche applications like defect detection in manufacturing, finding enough data for training can be challenging.

One approach to address this challenge is data augmentation. Data augmentation techniques involve creating new training examples by applying transformations such as rotation, flipping, scaling, and cropping to existing images. These augmented images can help increase the diversity of the dataset and improve the robustness of the model.

Another approach is to use transfer learning. Transfer learning involves using a pre-trained CNN model (e.g., trained on a large dataset like ImageNet) as a starting point and fine-tuning it on the limited dataset of product component images. This approach leverages the knowledge learned by the pre-trained model and can be effective in situations where there is limited training data available.

Additionally, active learning can be employed to selectively label the most informative examples for training. In this approach, the model is initially trained on a small labeled dataset, and then it iteratively selects the most uncertain or informative examples for labeling by a human expert. This process can help prioritize the labeling of data that is most beneficial for improving the model's performance.

Overall, the example of data acquisition in a smart factory highlights the importance of innovative approaches to address the challenge of limited training data in computational learning applications. By leveraging techniques such as data augmentation, transfer learning, and active learning, it is possible to

The Journal of Computational Science and Engineering. ISSN: 2583-9055

Volume: 2

Issue: 4

June 2024

overcome the data scarcity problem and develop effective computational learning models for defect detection and other manufacturing applications.

Fig. 3: A running example for data collection. A smart factory may produce various images of product components, which are classified as normal or defective by a convolutional neural network model. Unfortunately, with an application this specific, it is often difficult to find enough data for training the model.

LITERATURE SURVEY

An overview of this study is provided in the tabular format below, providing a comprehensive overview of relevant research works. The table encompasses crucial details such as the name of the study, author(s), publication year, research objectives, and key advantages and disadvantages identifier

Title	Authors	Year	Objectives	Advantages	Disadvantages
Leveraging Network Data Analytics Function	PANAGIO TIS K. GKONIS 1,NIKOLA OS	2024	1. Developing a Framework: Createa comprehensive framework that integrates network	Performance: By leveraging network data analytics and computational	data analytics and computational learning in 6G
andComputa tional learning for Data acquisition, ResourceOpt imization, Security and Privacyin 6G	NOMIKOS 2, IEEE), PANAGIO TIS TRAKAD AS 2, LAMBRO S SARAKIS		data analytics functions and computational learning algorithms for data acquisition, resource optimization, security, and privacy enhancement in 6G networks.	performance, including faster data acquisition, more	networks can add complexity to the network architecture, requiring specialized expertise and potentially increasing the risk
Networks	1, GEORGE XYLOURI S 3, XAVI MASIP-BR UIN4, JOSEP MARTRAT		2. Enhancing Data acquisition: Propose novel techniques to improve the efficiency and accuracy of data acquisition in 6G networks using	enhanced security measures.2.EnhancedUserExp erience: The use of data analytics and	of system failures or errors. 2. Resource Intensive: Data analytics and computational learning

			network data analytics and computational learning approaches.	improved user experience by optimizing network resources based on user behavior and preferences.	computationally intensive, requiring significant resources such as processing power and memory, which could lead to increased costs for network operators.
Computation al learning Model Generation withCopula- Based Synthetic Dataset for LocalDiffere ntially Private Numerical Data	QYUICHI SEI 1,2, (Member, IEEE), J. ANDREW ONESIMU , AND AKIHIKO OHSUGA 1(Member, IEEE)	2022	 Developing a Copula-Based Synthetic Dataset: Create a method to generate synthetic datasets using copulas, which preserve the statistical properties of the original data while ensuring local differential privacy for numerical data. Computational learning Model Generation: Delve into the training of computational learningmodels. using copula-based synthetic datasets to achieve comparable performance to models trained on original data,while preserving privacy. 	Preservation: The use of copula-based synthetic datasets ensures local differential privacy for numerical data, protecting certain information while allowing for meaningful analysis. 2.Data Utility: The synthetic datasets generated using copulas preserve the statistical properties of the original data, enabling computational learning models	1.LossofInformation:Theprocessofgeneratingsyntheticsyntheticdatasetsusingcopulasmayleadtosomecomparedtocomparedtocomparedtocouldimpactthroughputofcomputationallearningmodelstrainedonthesedatasets.2.Complexity:Implementingcopula-basedsyntheticsyntheticdatasetgenerationandlocaldifferentialprivacymechanismsmechanismsmayaddcomplexity tothedatapreprocessingandmodeltrainingpipeline,requiringadditionalcomputationalresourcesand expertise.synthetic
Title	Authors	Year	Objectives	Advantages	Disadvantages

r	1	1	15511. 2303-7		
Advancing Aviation Safety Through Computation al learning and Psychophysi ologicalData :A Systematic Review	IBRAHIM ALRESHI DI 1,2,3, IRENE MOULITS AS 1,2, AND KARL W. JENKINS1	2023	1.IdentificationofTrendsandPatterns:IdentifyIdentifytrendsandpatternsapplicationofcomputationallearninglearningandpsychophysiologicaldatadataanalysistechniquesin aviationsafetyresearch.2.EvaluationofMethodologies:EvaluateEvaluatethemethodologies used inexistingstudies,includingdataacquisitionacquisitionmethods,computationallearningalgorithms,andpsychophysiologicaldataanalysistechniques.	1.EnhancedSafetyM easures:The systematicreview can provide insights intointohow computational learninglearningand psychophysiological data analysisdata analysisenhanceexisting safety measures in aviation, leading to a safer aviation environment.2.ImprovedRisk Prediction: By synthesizing existing research, the review can identify patterns and trends that improve the prediction of safety-critical events in aviation, allowing for proactive risk management.	 Data Quality Concerns: Many studies in the field may suffer from data quality issues, such as small sample sizes, incomplete data, or biased datasets, which could affect the reliability of the findings. Algorithmic Limitations: Computational learning algorithms used in aviation safety research may have limitations in terms of accuracy, interpretability, or scalability, which could impact their effectiveness inreal-world applic ations.
Prioritization of Mobile IoT Data Transmission Based on Data Importance Extracted From Computation al learning Model	YUICHI INAGAKI , RYOICHI SHINKUM A , TAKEHIR O SATO , AND EIJI OKI	2019	Developacomputationallearningmodelcapable of extractingdata importance frommobile IoT devices toprioritizedatatransmission based onits significance.2.DataImportanceMetrics:Definemetrics for measuring	Efficiency: Prioritizing mobile IoT data transmission based	1.Complexity:ImplementingacomputationallearningmodeltoextractdataimportanceandprioritizedatatransmissionaddscomplexitytomobileIoTnetworkarchitecture,requiringspecializedexpertiseandpotentiallyincreasingthe riskofsystemfailuresorerrors.2.Resource

The Journal of Computational Science and Engineering. ISSN: 2583-9055

and impact or decision-making processes.	can optimize their	Computational learning algorithms used for data importance
--	--------------------	--

Title	Authors	Year	Objectives	Advantages	Disadvantages
Time-Series Data Classification and Analysis Associated With Computation al learning Algorithms for Cognitive Perception and Phenomenon	TAIKYEO NG JEONG , (Senior Member, IEEE)	2020	1.MethodologicalFrameworkDevelopment:Propose a robustmethodologicalframeworkforhandling time-seriesdata in the context ofcognitive perceptionand phenomenon.Thisframeworkshould encompassdata preprocessing,feature extraction,model selection, andevaluationmethodologiestailored to theintricacies oftime-series data.2.AlgorithmSelection andOptimization:Investigate and selectappropriatecomputationallearning algorithmsfor time-series dataclassification andanalysis, consideringtheir suitability forcognitive perceptiontasks. Additionally,optimize thesealgorithms toenhance theirperformance andefficiency inhandling complextemporal patternsinherentin cognitive data.	significantly improve classification accuracy compared to traditional methods. This is crucial in domains where precision is paramount, such as medical diagnosis or financial forecasting. 2.Real-Time Insights: By leveraging computational learning techniques, real-time insights can be gleaned from time-series data, allowing for timely decision-making and intervention. This is particularly beneficial in applications like anomaly detection in network traffic or predicting equipment failures	1.Complexity of Implementation: Time-series data analysis coupled with computational learning algorithms can be intricate to implement, requiring a deep understanding of both domains. Researchers might face challenges in accurately applying these methodologies, leading to potential errors or misinterpretations. 2.Data Preprocessing Overhead: Time-series data often require extensive preprocessing to handle missing values, outliers, noise, and temporal misalignments. This preprocessing overhead can be significant, potentially consuming a substantial amount of computational resources and time.

Volume: 2

ANonlinger	Huon Lin	2010	1 Davalanin a	1 Improved	1 Limited
	Huan Liu, Member,	2019	1.Developing Accurate Predictive	1.Improved	1.Limited Generalizability:
U U	,		Models: One	Accuracy: Computational	5
	IEEE, Zhang				Computational
via Machine	Zheng		objective could be to	learning techniques,	learning models
Learning	Liu,		develop and validate	particularly	trained on specific
Techniques	Senior		computational	nonlinear regression	geomagnetic
for	Member,		learning-based	models, can offer	datasets may have
	IEEE,		predictive models	improved accuracy	limited
Data	Shuo Liu,		capable of accurately	in reconstructing	generalizability to
Reconstructi	Student		reconstructing	geomagnetic data	different
on	Member,		geomagnetic data.	compared to	geographical
Processing	IEEE,		This involves	traditional methods.	locations or time
	Yihao Liu,		training models that	These techniques	periods. This could
	Junchi		can capture the	can capture	restrict the
	Bin, Fang		complex nonlinear	complex	applicability of the
	Shi, and		relationships inherent	relationships and	proposed
	Haobin		in geomagnetic	patterns present in	techniques to
	Dong		phenomena.	the data, leading to	broader contexts or
				more accurate	real-world
			2.Exploring	predictions.	scenarios.
			Nonlinear Regression		
			Techniques: Another	2.Flexibility and	2.Data Quality and
			objective could be to	Adaptability:	Reliability:
			explore and compare	Computational	Geomagnetic data
			various nonlinear	learning models can	can be susceptible
			regression techniques	adapt to various	to various sources
			within the	types of	of noise, artifacts,
			computational	geomagnetic data	and biases, which
			learning domain.	and environmental	may adversely
			This involves	conditions. They	affect the
			experimenting with	can handle	performance of
			algorithms such as	nonlinear	computational
			support vector	relationships and	learning algorithms.
			machines (SVM),	complex	Ensuring the quality
			random forests,	interactions between	and reliability of the
			neural networks, and	different variables,	input data is crucial
			Gaussian processes	providing a more	for obtaining
			to identify the most	flexible framework	accurate
			suitable approach for	for data	reconstruction resul
			geomagnetic	reconstruction proce	ts.
			data reconstruction.	ssing.	
Title	Authors	Year	Objectives	Advantages	Disadvantages

June 2024

					1
Lessons from archives: Strategies for collecting sociocultural data in computationa l learning	Eun Seo Jo, Timnit Gebru	2020	1.HighlighttheImportance of EthicalDataacquisition:Emphasizethesignificanceofethical considerationsingatheringsociocultural data forcomputationallearning applications,drawingfromdrawing fromtheinsightsprovided inthe referenced paper.2.DiscussMethodologicalStrategies:Outlineandanalyzethemethodologicalstrategies proposed inthe referenced paperforcollectingsocioculturaldata,includingarchivalresearchtechniquesandcommunityengagement approaches.	insights from the referenced paper can provide a broader contextual understanding of sociocultural data acquisition in computational learning. This helps readers situate the specific research within a larger framework, making it more relevant and insightful. 2.Methodological	the focus or theme of the IEEE conference paper. Introducing material that diverges from the main topic could confuse readers and

Volume: 2

A survey on data acquisition for computationa l learning: a big data-ai integration perspective	Yuji Roh, Geon Heo, Steven Euijong Whang	2019	current landscape of data acquisition methods for computational	paper into an IEEE conference paper can enhance the literature review section by providing a comprehensive overview of data acquisition methods for computational learning within the context of big data and AI integration. This can demonstrate a deep	 1.Plagiarism Concerns: Directly incorporating content from another paper without proper citation and acknowledgment could lead to accusations of plagiarism, which is a serious ethical violation in academia. 2.Copyright Issues: Reproducing content from a copyrighted paper without obtaining permission from the copyright holder (usually the publisher) can result in legal consequences.

June 2024

Title	Authors	Year	Objectives	Advantages	Disadvantages
Computation al learning model towards evaluating data gathering methods in manufacturin g and mechanical engineering	Mahyar Amini, Koosha Sharifani, Ali Rahmani	2023	1. IntroducetheProposedComputationallearningModel:Presentthearchitectureanddesignofthecomputationallearningmodeltailoredforevaluatingdatagatheringmethodsinmanufacturingandmechanicalengineering.Detailtheunderlyingalgorithms,techniques,techniques,andmethodologiesemployedemployedinthemodel'sdevelopment.2.2. DataPreparationandFeatureEngineering:Describe the processofdataacquisitionmethods,datapreprocessingtechniques,andfeatureselectionstrategies.EmphasizeEmphasizetheimportanceofrepresentativedatasets and featureengineeringinenhancingthemodel's performanceandgeneralizability.	 1.Enhanced Methodology: The paper's methodology for evaluating data gathering methods using computational learning can enrich the methodology section of the IEEE conference paper. This could provide a more comprehensive approach to data acquisition and analysis, especially for researchers in manufacturing and mechanical engineering fields. 2.Validation and Comparison: If the IEEE conference paper aims to propose or evaluate data gathering methods, incorporating the results from the mentioned paper can serve as a validation or comparison. This adds credibility to the proposed methods by showing how they perform relative to existing approaches. 	1.Copyright Issues: Reproducing content from another publication without proper permission or acknowledgment could lead to copyright infringement issues, potentially resulting in legal consequences or rejection of the conference paper. 2.Plagiarism Concerns: Simply copying text or ideas from another source without proper citation or attribution is considered academic misconduct and can damage the credibility of the authors and their wo rk.

The Journal of Computational Science and Engineering. ISSN: 2583-9055

The Science of Data acquisition: Insights from Surveys can Improve Computation al learning Models	Stephanie Eckman, Barbara Plank, Frauke Kreuter	2024	 Survey Design: Develop guidelines for designing surveys that collect data relevant to computational learning model improvement, considering factors such as question types, response formats, and sample sizes. Data Preprocessing: Investigate methods for preprocessing survey data to ensure its quality and compatibility with computational learning algorithms, such as handling missing values, encoding categorical variables, and removing outliers. 	1.EnhancedModel Performance:By incorporating insightsfrom surveys, computational learning models can be trained on more relevantand and informativebe trained on more relevantand informativedata, leading to improved performanceperformancein predictionand classification tasks.2.ImprovedData Understanding: Surveys can provide valuablenerelationships in the data, helping to identifypatternsand relationshipsand relationshipsintothe underlying patternsand relationshipsintothe underlying to identifyand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relationshipsand relationshipsunderstanding:and relations	 1.Bias in Survey Responses: Survey responses may be biased due to factors such as respondent demographics, survey wording, or response format, which could lead to biased insights and potentially biased computational learning models. 2.Limited Generalizability: Survey data may have limited generalizability to the broader population or context, as it is based on a specific sample of respondents and may not capture the full range of variability in the dat a.
---	--	------	--	--	--

Volume: 2

June 2024

METHODOLOGY

Data Acquisition Techniques: Utilize data discovery methods to find relevant datasets for training computational learning models. Consider data augmentation strategies to enhance existing datasets with external data

Data Labeling: Explore options like crowdsourcing, self-learning, or weak supervision for labeling data when needed Improving Existing Data: Focus on techniques for enhancing data quality through cleaning, especially with a computational learning application perspective

Decision Flow Chart: Develop a decision flow chart that guides the selection of data acquisition techniques, considering aspects like data acquisition, labeling, and improving existing data

Interdisciplinary Approach: Acknowledge that data acquisition techniques stem from various disciplines like computational learning, natural language processing, computer vision, and data management. Understanding this interdisciplinary landscape is crucial for informed decision-making

Future Research Challenges: Identify and address future research challenges in data acquisition for computational learning to contribute to the advancement of the field

CONCLUSION

In this survey, we have explored the critical role of data acquisition in the integration of Big Data and AI for computational learning. We have highlighted the challenges and opportunities in data acquisition, emphasizing the importance of high-quality, diverse, and labeled datasets. Additionally, we have discussed various techniques and strategies for effective data acquisition, including data augmentation, federated learning, and differential privacy.

Our survey underscores the need for a holistic approach to data acquisition that considers not only the technical aspects but also the ethical and legal implications. As AI continues to advance, the quality and quantity of data will play an increasingly significant role in the success of computational learning models.

By understanding the key trends and challenges in data acquisition, researchers and practitioners can develop more robust and effective data acquisition strategies, leading to improved AI systems and applications. We hope that this survey serves as a valuable resource for the research community and contributes to the ongoing advancement of AI technologies.

REFERENCES

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," Journal of Computational learning Research, vol. 3, pp. 993–1022,2003.

[2] A. Kumar, J. Naughton, J. M. Patel, and X. Zhu, "To join or notto join? Thinking twice about joins before feature selection," inSIGMOD, 2016, pp. 19–34.

[3] V. Shah, A. Kumar, and X. Zhu, "Are key-foreign key joins safe toavoid when learning high-capacity classifiers?" PVLDB, vol. 11,no. 3, pp. 366–379, Nov. 2017.

[4] M. Stonebraker and I. F. Ilyas, "Data integration: The currentstatus and the way forward," IEEE Data Eng. Bull., vol. 41, no. 2, pp. 3–9, 2018.

[5] A. Doan, A. Y. Halevy, and Z. G. Ives, Principles of Data Integration. Morgan Kaufmann, 2012.

[6] S. Li, L. Chen, and A. Kumar, "Enabling and optimizing non-linear feature interactions in factorized linear algebra," in SIGMOD, 2019, pp. 1571–1588.

[7] L. Chen, A. Kumar, J. F. Naughton, and J. M. Patel, "Towardslinear algebra over normalized data," PVLDB, vol. 10, no. 11, pp.1214–1225, 2017.

[8] A. Kumar, J. F. Naughton, J. M. Patel, and X. Zhu, "To join or notto join? Thinking twice about joins before featureselection," inSIGMOD, 2016, pp. 19–34.

[9] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, "Turkit:Human computation algorithms on mechanical turk," in UIST,2010, pp. 57-66.

[10] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor, "Automan: A platform for integrating human-based and digital computation," in OOPSLA, 2012, pp. 639–654.

[11] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar, "The jabberwocky programming environment for structured social The Journal of Computational Science and Engineering. ISSN: 2583-9055

computing," in UIST, 2011, pp. 53-64.

[12] H. Park, R. Pang, A. G. Parameswaran, H. Garcia-Molina,

N. Polyzotis, and J. Widom, "Deco: A system for declarative

crowdsourcing," PVLDB, vol. 5, no. 12, pp. 1990–1993, 2012.

[13] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin, "Crowddb: Answering queries with crowdsourcing," in SIGMOD, 2011, pp. 61–72.

[14] A. Marcus, E. Wu, S. Madden, and R. C. Miller, "Crowdsourceddatabases: Query processing with people," in CIDR, 2011, pp.211–214.

[15] R. Boim, O. Greenshpan, T. Milo, S. Novgorodov, N. Polyzotis, and W. C. Tan, "Asking the right questions in crowd datasourcing," in ICDE, 2012, pp. 1261–1264.

[16] Prasad N. Achyutha, Sushovan Chaudhury, Subhas Chandra Bose, Rajnish Kler, Jyoti Surve, Karthikeyan Kaliyaperumal, "User Classification and Stock Market-Based Recommendation Engine Based on Machine Learning and Twitter Analysis", Mathematical Problems in Engineering, vol. 2022, Article ID 4644855, 9 pages, 2022. https://doi.org/10.1155/2022/4644855