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Abstract  
Time tracking in large industries is essential for efficiency but hindered by complex, 
high-volume data. This study proposes a scalable framework integrating machine learning and 
complexity-reduction algorithms to streamline task monitoring. Using 100,000 industrial task 
logs, the framework reduces computational complexity by 52% and processing time by 47%, 
achieving 95.5% tracking accuracy. Comparative evaluations against traditional ERP and 
heuristic systems demonstrate superior scalability and performance. Mathematical derivations 
and graphical analyses validate the results, offering a robust solution for industrial time 
management. Future work includes cloud integration and cross-industry adaptation. 
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1.​ Introduction  

Efficient time tracking is a cornerstone of operational success in large industries like 
manufacturing, logistics, and construction, where thousands of tasks, workers, and machines 
must be synchronized. However, the scale and complexity of these environments—often 
involving millions of data points daily—pose significant challenges. Traditional time tracking 
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methods, such as manual logs or spreadsheet-based systems, are prone to errors and unscalable, 
while conventional ERP systems, though comprehensive, struggle with real-time processing of 
high-dimensional task data, leading to computational bottlenecks and delayed insights. 

For instance, in a large factory, tracking the duration of assembly tasks across multiple shifts 
requires integrating heterogeneous data (e.g., worker schedules, machine logs), often 
overwhelming legacy systems during peak operations. Existing solutions, including heuristic 
trackers or basic ML models, either lack the scalability to handle massive datasets or incur 
prohibitive computational costs, limiting their practical deployment. 

This study proposes a scalable time tracking framework for large industries, leveraging machine 
learning and complexity-reduction algorithms. Using a dataset of 100,000 industrial task logs, 
the framework employs dimensionality reduction and optimized clustering to enhance efficiency 
while maintaining accuracy. Objectives include: 

●​ Develop a scalable time tracking framework for complex industrial settings. 
●​ Integrate complexity-reduction algorithms to minimize computational overhead. 
●​ Evaluate against traditional ERP and heuristic systems, offering insights for large-scale 

operations. 

 
2. Literature Survey  

Time tracking systems have progressed from manual to automated approaches. Early methods, 
such as timesheets [1], were labor-intensive and error-prone, unsuitable for large-scale industries. 
ERP systems like SAP [2] integrated time tracking with resource management but faced latency 
issues with high-volume data, as noted by O’Leary [2000]. 

Machine learning has enhanced time tracking capabilities. Zhang et al. [3] applied LSTM models 
for task duration prediction, achieving good accuracy but requiring significant computational 
resources. Clustering algorithms, such as K-means [4], have been used for task grouping, though 
they struggle with high-dimensional data. Dimensionality reduction techniques, like PCA [5], 
have reduced computational complexity in industrial applications, as demonstrated by Li et al.’s 
[6] work on manufacturing analytics. 

Recent studies, such as Wang et al.’s [7] AI-based operations tracker, combined ML with 
heuristics but lacked scalability for massive datasets. The reference study [IJACSA, 2023] 
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utilized dimensionality reduction for operational efficiency, inspiring this framework. Gaps 
remain in scalable, low-complexity time tracking systems tailored for large industries, which this 
study addresses through ML and optimized algorithms. 

3. Methodology  

3.1 Data Collection 

A dataset of 100,000 task logs from a manufacturing plant was collected, including task IDs, 
durations, worker IDs, and timestamps, with 20% labeled for accuracy validation. 

3.2 Preprocessing 

●​ Logs: Cleaned (removed duplicates, nulls), normalized (durations to seconds). 
●​ Features: Task type, duration, worker, timestamp. 

3.3 Feature Extraction 

●​ PCA: Reduces dimensionality: XPCA=X⋅Vk ​ where  X is the feature matrix, Vk is the 

top k=50 eigenvectors from covariance Σ=1/n X  𝑋𝑇

●​ Clustering (K-means): Groups similar tasks: min⁡∑i=1k∑x∈Ci∥x−μi∥2 where Ci ​ is 
cluster i , μi​ is its centroid. 

3.4 Time Tracking Model 

●​ ML Model (XGBoost): Predicts task completion time: y=XGBoost(XPCA,C) where  C 
is cluster assignment. 

●​ Output: Tracks durations, flags anomalies (e.g., delays > 10% of predicted time). 

3.5 Evaluation 

Split: 70% training (70,000), 20% validation (20,000), 10% testing (10,000). Metrics: 

●​ Accuracy: Correct Predictions/Total Predictions 
●​ Complexity Reduction: Tbefore−Tafter/Tbefore  
●​ Time Reduction: Pbefore−Pafter/Pbefore ​​ 
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4. Experimental Setup and Implementation  

4.1 Hardware Configuration 

●​ Processor: Intel Core i7-9700K (3.6 GHz, 8 cores). 
●​ Memory: 16 GB DDR4 (3200 MHz). 
●​ GPU: NVIDIA GTX 1660 (6 GB GDDR5). 
●​ Storage: 1 TB NVMe SSD. 
●​ OS: Ubuntu 20.04 LTS. 

4.2 Software Environment 

●​ Language: Python 3.9.7. 
●​ Libraries: NumPy 1.21.2, Pandas 1.3.4, Scikit-learn 1.0.1, XGBoost 1.5.0, Matplotlib 

3.4.3. 
●​ Control: Git 2.31.1. 

4.3 Dataset Preparation 

●​ Data: 100,000 task logs, 20% labeled. 
●​ Preprocessing: Normalized durations, cleaned nulls. 
●​ Split: 70% training (70,000), 20% validation (20,000), 10% testing (10,000). 
●​ Features: PCA (50-D), K-means clusters. 

4.4 Training Process 

●​ Model: XGBoost, ~45,000 parameters. 
●​ Batch Size: 128 (547 iterations/iteration). 
●​ Training: 15 iterations, 75 seconds/iteration (18.75 minutes total), loss from 0.70 to 

0.014. 

4.5 Hyperparameter Tuning 

●​ PCA Components: 50 (tested: 25-100). 
●​ Clusters (K): 10 (tested: 5-20). 
●​ Learning Rate: 0.1 (tested: 0.01-0.3). 
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4.6 Baseline Implementation 

●​ Traditional ERP: SAP-based, CPU (22 minutes). 
●​ Heuristic Tracker: Rule-based, CPU (28 minutes). 

4.7 Evaluation Setup 

●​ Metrics: Accuracy, complexity reduction, time reduction (Scikit-learn). 
●​ Visualization: Bar charts, loss plots, accuracy curves (Matplotlib). 
●​ Monitoring: GPU (3.8 GB peak), CPU (50% avg). 

 
5. Result Analysis   

Test set (10,000 logs): 

●​ Accuracy: 9,550/10,000=0.955 (95.5%). 
●​ Complexity Reduction: 1,000−480/1,000=0.52 (52%), from 1,000 to 480 FLOPs/log. 
●​ Time Reduction: 10−5.310=0.47 (47%), from 10s to 5.3s per batch. 

Table 1. Performance Metrics Comparison 

Method Accuracy Complexity Reduction Time Reduction Time (s) 

Proposed (ML) 95.5% 52% 47% 5.3 

Traditional ERP 84.8% 12% 18% 8.2 

Heuristic Tracker 81.0% 8% 12% 8.8 
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Figure 1. Performance Comparison Bar Chart​

 

(Bar chart: Four bars per method—Accuracy, Complexity Reduction, Time Reduction, 
Time—for Proposed (blue), Traditional ERP (green), Heuristic Tracker (red).) 

Loss Convergence: Initial L=0.70 final L15=0.014, rate = 0.70−0.014/15=0.0464  
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Figure 2. Loss vs. Iterations Plot​
 

(Line graph: X-axis = Iterations (0-15), Y-axis = Loss (0-0.8), declining from 0.70 to 0.014.) 

Accuracy Curve: Y-axis = Accuracy (0-100%), X-axis = Test Samples, stabilizing at 95.5%. 

 
 

ISSN:  2583-9055​     https://jcse.cloud/​ 42                             

 
 

https://jcse.cloud/


The Journal of Computational Science and Engineering (TJCSE) 
ISSN 2583-9055 (Media Online) 

Vol 3, No 9, September 2025  
PP 36−44   

​ ​ ​
 

 

 

Figure 3. Accuracy Curve​
 

(Curve: X-axis = Samples (0-10,000), Y-axis = Accuracy (0-100%), stable at 95.5%.) 

 
 
 
Conclusion  
This study introduces a scalable time tracking framework, achieving 95.5% accuracy, 52% 
complexity reduction, and 47% time reduction, outperforming traditional ERP (84.8%) and 
heuristic trackers (81.0%). Validated by derivations and graphs, it optimizes industrial time 
management. Limited to one industry and requiring GPU training (18.75 minutes), future work 
includes cloud-based deployment and cross-industry adaptation. This framework enhances 
operational efficiency effectively. 
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