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Abstract 
మధుమేహ రేటినోపతి (DR) అనేది రక్తంలో అధిక చక్కెర కారణంగా వచ్చే కంటి వ్యాధి. ప్రపంచవ్యాప్తంగా 
DR రోగుల సంఖ్య వేగంగా పెరుగుతోంది, 2030 నాటికి ఇది 191 మిలియన్లకు చేరుకునే అవకాశం ఉంది. 
కంటి వైద్యుల కొరత వల్ల ప్రతి రోగిని చేతితో పరీక్షించడం సమయం తీసుకునే పని అవుతోంది. ఈ 
సమస్యను అధిగమించడానికి డీప్ లెర్నింగ్ (DL) ఆధారంగా ఆటోమేటెడ్ పద్ధతులు 
ఉపయోగపడుతున్నాయి. రెటీనా ఫండస్ చిత్రా ల ద్వారా DR ఉనికిని, దాని తీవ్రతను గుర్తించడం 
సాధ్యమవుతుంది. పరిశోధనలు చూపిస్తు న్న విధంగా, డీప్ లెర్నింగ్ పద్ధతులు సాంప్రదాయ పద్ధతుల కంటే 
ఎక్కువ ఖచ్చితత్వంతో DRను గుర్తించగలవు. ఈ వ్యాసంలో DR లక్షణాలు, ప్రమాద కారకాలు, వర్గీకరణ, 
మరియు DL వినియోగంపై చర్చించబడింది. చివరగా, DR గుర్తింపులో డీప్ లెర్నింగ్ సవాళ్లు  మరియు 
భవిష్యత్తు  అవకాశాలు కూడా వివరించబడ్డా యి. 
Keywords: రెటీనా · ఫండస్ చిత్రం · మధుమేహ రేటినోపతి · వర్గీకరణ · డీప్ లెర్నింగ్ 
1. పరిచయం (Introduction) 
మానవ కంటి నిర్మాణం అత్యంత క్లిష్టమైనది. ఇది మనకు దృష్టి సామర్థ్యా న్ని కలిగించి, ప్రపంచాన్ని 
గుర్తించడంలో, అర్థం చేసుకోవడంలో మరియు అన్వేషించడంలో సహాయపడుతుంది. దృష్టి ప్రక్రియలో 
ప్రధానమైన అంశం కాంతి గ్రహణం. మనం ఏ వస్తు వుని చూసినా, కళ్ళు కాంతిని స్వీకరిస్తా యి. 
రెటీనా అనే కంటి వెనుకభాగంలో సుమారు 66% భాగాన్ని కప్పే సున్నితమైన పొర కాంతిని గ్రహించి దృష్టి 
ప్రక్రియను ప్రా రంభిస్తు ంది. రెటీనా నాడీ కణజాలం నుండి అభివృద్ధి చెంది, నేరుగా ఆప్టిక్ నర్వ్ ద్వారా 
మెదడుతో అనుసంధానమై ఉంటుంది. ఇది కాంతిని గ్రహించి, దానిని ఒక వస్తు వు యొక్క దృశ్య 
సంకేతాలుగా మార్చుతుంది. ఈ సంకేతాలు నాడుల ద్వారా విద్యుత్ తరంగాల రూపంలో మెదడుకు చేరి, 
మనకు స్పష్టమైన దృష్టిని కలిగిస్తా యి. 
ఈ నేపథ్యంలో, మధుమేహ రేటినోపతి (Diabetic Retinopathy – DR) మధుమేహం వల్ల కలిగే 
అత్యంత ప్రమాదకరమైన పరిణామాలలో ఒకటి. ఇది రెటీనా రక్తనాళాలను దెబ్బతీసి, ద్రవ లీకేజీ మరియు 
దృష్టి వక్రీభవనాలను కలిగిస్తు ంది. దీని కారణంగా కంటి దెబ్బతినడం, చివరికి అంధత్వం వచ్చే అవకాశం 
ఉంటుంది. 
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అమెరికా, యునైటెడ్ కింగ్డమ్, సింగపూర్ వంటి దేశాలలో DR ఒక సాధారణ వ్యాధిగా విస్తృతంగా 
నమోదు చేయబడింది. ఇది కంటికి మబ్బు (Cataract), గ్లా కోమా (Glaucoma) వంటి ఇతర అంధత్వానికి 
దారితీసే ప్రధాన సమస్యలతో పాటు కనిపించే ఒక ప్రధాన కారణంగా పరిగణించబడింది (NCHS, 2019; 
NCBI, 2018; SNEC, 2019). 
 
 
 2. ఫండస్ ఇమేజ్ (The Fundus Image) 
 
ఫండస్ ఇమేజ్ అనేది కంటి వెనుక భాగంలోని రెటినా, ఆప్టిక్ డిస్క్, మాక్యులా, రక్తనాళాలను చూపించే 
చిత్రం. దీన్ని తీసుకోవడానికి ఒఫ్తా ల్మోస్కోప్ (Ophthalmoscope) అనే పరికరాన్ని ఉపయోగిస్తా రు. దీనిని 
1850లో హెర్మన్ వాన్ హెల్మ్‌హోల్ట్జ్ అనే శాస్త్రవేత్త కనిపెట్టా రు. 
ఫండస్ ఇమేజింగ్ ఉపయోగాలు 
ఫండస్ ఇమేజ్ ద్వారా కంటి మరియు శరీరంలోని పలు రకాల వ్యాధులను గుర్తించవచ్చు. ఉదాహరణలు: 
డయాబెటిక్ రెటినోపతి (DR), హైపర్టెన్సివ్ రెటినోపతి, మాక్యులార్ డిజెనరేషన్ (Age-related 
Macular Degeneration), గ్లా కోమా, లుకీమియా, ఇతర సిస్టమిక్ క్యాన్సర్లు , ఇన్ఫెక్షన్లు  (ఉదా: 
Subacute bacterial endocarditis). ఫండస్ ఇమేజింగ్ పద్ధతులు: డిజిటల్ ఫండస్ ఫోటోగ్రఫీ, 
ఆటోఫ్లో రెసెన్స్ ఇమేజింగ్, ఇన్ఫ్రారెడ్ రిఫ్లెక్టెన్స్, అధునాతన డిజిటల్ ఇమేజింగ్ టెక్నాలజీలు. 
సాంప్రదాయ పద్ధతిలో కెమెరా ఫిల్మ్ వాడితే, డిజిటల్ కెమెరాల్లో  CCD (Charge-Coupled Device) లేదా 
CMOS సెన్సార్ వాడతారు. ఇవి కాంతిని ఎలక్ట్రికల్ సిగ్నల్‌గా మార్చి, పిక్సెల్స్ రూపంలో భద్రపరుస్తా యి. 
ఎక్కువ సెన్సార్లు  ఉంటే, హై రిజల్యూషన్ చిత్రా లు వస్తా యి. 
DR లక్షణాలు ఫండస్ ఇమేజ్‌లో ఫండస్ ఇమేజ్ ద్వారా DR ను గుర్తించడంలో ముఖ్యమైన లక్షణాలు: 

●​ మైక్రో అన్యూరిజమ్స్ (MA) – చిన్న ఎరుపు బొట్లు , హీమరేజ్‌లు (HEM) – రక్తస్రా వాలు, 
ఎక్సుడేట్స్ (EX) – లిపిడ్/ప్రో టీన్ లీకేజీ వలన ఏర్పడిన తెల్లటి మచ్చలు, కాటన్ వూల్ స్పాట్స్ 
(CWS) – రెటినాలో ఆక్సిజన్ లేకపోవడం వలన ఏర్పడిన తెల్లటి మబ్బులాంటి ప్యాచులు 

పబ్లిక్ ఫండస్ డేటాబేస్‌లు పలు పబ్లిక్ డేటాబేస్‌లు DR రీసెర్చ్ మరియు గ్రేడింగ్ కోసం అందుబాటులో 
ఉన్నాయి. వీటిలో చిత్రా ల సంఖ్య, రిజల్యూషన్, ఫీల్డ్ ఆఫ్ వ్యూ (FOV), ఉపయోగం వేరువేరుగా 
ఉంటుంది. 
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ఫిగర్ 1. సాధారణ ఫండస్ చిత్రం [5]. మూలం: Lipids in Health and Disease (ఓపెన్ యాక్సెస్) 
పట్టిక 1 – DR గ్రేడింగ్ కోసం ఫండస్ ఇమేజ్ డేటాబేస్‌లు 

డేటాబేస్ 
చిత్రా ల 
సంఖ్య 

రిజల్యూషన్ FOV ప్రధాన పని 

e-Ophtha [6] 463 1440×960, 2048×1360 50° 
MA, EX గుర్తింపు; ఆరోగ్యకరమైన 
vs. DR వర్గీకరణ 

MESSIDOR [7] 1200 1440×960, 2240×1488 45° DR గ్రేడింగ్ 

MESSIDOR-2 
[7] 1748 వేరువేరు 45° DR గ్రేడింగ్ 

DiaretDB0 [8] – 1500×1152 50° DR గ్రేడింగ్ 

DiaretDB1 [9] 89 1500×1152 50° MA, EX విభజన 

Kaggle [10] 88,702 వేరువేరు – DR గ్రేడింగ్ 

ROC [11] 100 
768×576, 1058×1061, 
1389×1383 

45° MA, HEM విభజన 

IDRiD [12] 516 4288×2848 50° DR గ్రేడింగ్; MA, EX విభజన 

APTOS [13] 5590 – – DR గ్రేడింగ్ 

 
 
3. డయాబెటిక్ రెటినోపతి (Diabetic Retinopathy – DR)  
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ప్రపంచవ్యాప్తంగా డయాబెటిస్‌ రోగుల సంఖ్య వేగంగా పెరుగుతోంది. దీనికి కారణాలు:వయసు పెరుగుదల 
(Aging), శారీరక వ్యాయామం లేకపోవడం, ఊబకాయం (Obesity), పట్టణ జీవనశైలి (Urbanization), 
జనాభా పెరుగుదల. 
అంచనాలు: 2025 నాటికి 300 మిలియన్ల మంది, 2030 నాటికి 366 మిలియన్ల మంది డయాబెటిస్ 
బాధితులు అవుతారని అంచనా. డయాబెటిక్ రెటినోపతి (DR) అనేది కంటి చూపు కోల్పోవడానికి 
ప్రధాన కారణం.​
ఇది రెటినాలోని రక్తనాళాలను దెబ్బతీసి, రక్తం లేదా ద్రవాలు లీక్ అయ్యేలా చేసి, వీక్షణం (Vision) 
మసకబార్చుతుంది. 
DR దశలు (Stages of DR)-DR ప్రధానంగా 4 దశలుగా ముందుకు సాగుతుంది: 
Mild NPDR (Non-Proliferative DR): కేవలం మైక్రో అన్యూరిజమ్స్ (MA) మాత్రమే ఉంటాయిచిన్న 
ఎర్రటి బొట్లు  కనిపిస్తా యి. Moderate NPDR: రక్తనాళాలు రక్తా న్ని తరలించే శక్తిని 
కోల్పోతాయి,ఉబ్బిపోతాయి  లక్షణాలలో ఏవైనా ఉంటాయి: మైక్రో అన్యూరిజమ్స్ (MA), రక్తస్రా వాలు 
(HEM), ఎక్సుడేట్స్ (EX), కాటన్ వూల్ స్పాట్స్ (CWS). Severe NPDR: ఎక్కువ రక్తనాళాలు బ్లా క్ 
అవుతాయి, రెటినాకు రక్తప్రవాహం తగ్గిపోతుంది, రెటినా కొత్త రక్తనాళాలు పెరగడానికి సంకేతం ఇస్తు ంది. 
Proliferative DR (PDR): కొత్త రక్తనాళాలు పెరుగుతాయి (Neovascularization), ఇవి రెటినా లోపలి 
పొర వెంట పెరిగి, విట్రియస్ జెల్ వరకు వ్యాపిస్తా యి, ప్రీ-రెటినల్ రక్తస్రా వం కూడా జరుగుతుంది 
DR వల్ల కలిగే సమస్యలు: ప్రపంచవ్యాప్తంగా 285 మిలియన్ల మందికి దృష్టి సమస్యలు ఉన్నాయి. 
అందులో 39 మిలియన్ల మంది పూర్తిగా చూపు కోల్పోయారు,మరో 246 మిలియన్ల మందికి చూపు 
బలహీనమైంది 
భారతదేశంలో 1 బిలియన్ జనాభాకు కేవలం 12,000 కంటి వైద్యులు (Ophthalmologists) మాత్రమే 
ఉన్నారుఅంటే ప్రతి 90,000 మందికి ఒక వైద్యుడు మాత్రమే → ఇది తీవ్రమైన అసమానత 
DR రిస్క్ ఫ్యాక్టర్స్ (Risk Factors)-కంట్రో ల్ చేయని డయాబెటిస్ (ఎక్కువ కాలం పాటు), అధిక 
రక్తపోటు (Hypertension), చక్కెర స్థా యిలు అస్థిరంగా ఉండటం, హైపర్‌లిపిడీమియా (రక్తంలో 
కొవ్వులు ఎక్కువగా ఉండటం). ప్రా రంభ దశలో DR గుర్తించడం ఎందుకు ముఖ్యం: ప్రా రంభ దశల్లో  
DR లక్షణాలు కనిపించవు (Asymptomatic) కానీ ఆ దశల్లో నే న్యూరల్ డ్యామేజ్ మరియు 
మైక్రో వాస్క్యులర్ మార్పులు మొదలవుతాయి, కాబట్టి  క్రమం తప్పకుండా కంటి పరీక్షలు చేయడం 
చాలా అవసరం 
 
 
 
 
 
 

 
 

ISSN:  2583-9055​     https://jcse.cloud/​   

​ ​ 238 
 

https://jcse.cloud/


The Journal of Computational Science and Engineering (TJCSE) 
ISSN 2583-9055 (Media Online) 

Vol 3, No 11, Nov 2025 
PP 235- 252 

 
​ ​ ​

 
 
 
పట్టిక 2 – అంతర్జా తీయ క్లినికల్ DR తీవ్రతా ప్రమాణం (ICDRSS) ఆధారంగా DR దశలు: 
దశ లక్షణాలు తీవ్రత స్థా యి 

దశ 
I 

ఎటువంటి అసాధారణతలు కనిపించవు DR లేదు 

దశ 
II 

కేవలం మైక్రో అన్యూరిజమ్స్ (MA) మాత్రమే ఉంటాయి తేలికపాటి 
NPDR 

దశ 
III 

క్రింది వాటిలో ఏదైనా: – మైక్రో అన్యూరిజమ్స్ (MA) – రక్తస్రా వాలు (HEM) – కఠిన 
ఎక్సుడేట్స్ (EX) – కాటన్ వూల్ స్పాట్స్ (CWS) – తీవ్రమైన NPDR లక్షణాలు లేవు 

మధ్యస్థ NPDR 

దశ 
IV 

క్రింది వాటిలో ఏదైనా: – అన్ని నాలుగు క్వాడ్రెంట్స్‌లో 20 కంటే ఎక్కువ రక్తస్రా వాలు 
(HEM) – రెండు లేదా అంతకంటే ఎక్కువ క్వాడ్రెంట్స్‌లో వీనస్ బీడింగ్ – 
ప్రో లిఫరేటివ్ DR (PDR) లక్షణాలు లేవు 

తీవ్రమైన 
NPDR 

దశ 
V 

– నయోవాస్క్యులరైజేషన్ – ప్రీ-రెటినల్ రక్తస్రా వం (HEM) 
ప్రో లిఫరేటివ్ 
DR (PDR) 

 
4. డీప్ లెర్నింగ్ (Deep Learning) 
డీప్ లెర్నింగ్ (DL) అనేది కృత్రిమ న్యూరల్ నెట్‌వర్క్‌లు (Artificial Neural Networks – ANN) 
ఆధారంగా రూపొందించబడిన పద్ధతి. ఇవి మానవ మెదడు నిర్మాణం నుండి ప్రేరణ పొందినవి. 
DL యొక్క ముఖ్య లక్షణం:ఇది డేటాలో దాగి ఉన్న లక్షణాలను (Hidden Features) ఆటోమేటిక్‌గా 
నేర్చుకుంటుంది.సాంప్రదాయ మెషిన్ లెర్నింగ్ (ML) పద్ధతులలో ఉండేలా మానవం చేత ప్రత్యేక ఫీచర్లు  
డిజైన్ చేయాల్సిన అవసరం ఉండదు.ఎక్కువ డేటా లభిస్తే DL మరింత అధిక ఖచ్చితత్వం ఇస్తు ంది. 
సాధారణ DL మోడల్: DR గ్రేడింగ్ లేదా లీజన్ సెగ్మెంటేషన్ కోసం సాధారణ DL మోడల్‌లో:ఇన్పుట్ 
లేయర్, హిడెన్ లేయర్లు  అవుట్‌పుట్ లేయర్ ఉంటాయి. 
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Fig. 2 Generalized DL model for DR grading or lesion segmentation 
4.1​కృత్రిమ న్యూరల్ నెట్‌వర్క్ (Artificial Neural Network – ANN) 

 
సాధారణ ANN లో మూడు లేయర్లు  ఉంటాయి: ఇన్పుట్ లేయర్, హిడెన్ లేయర్, అవుట్‌పుట్ లేయర్. 
ఒకటి కంటే ఎక్కువ హిడెన్ లేయర్లు  ఉంటే దానిని డీప్ న్యూరల్ నెట్‌వర్క్ అంటారు. మొదటి లేయర్‌లో 
ఎడ్జెస్ (Edges) గుర్తిస్తా యి, రెండో లేయర్‌లో షేప్స్ (Shapes) గుర్తిస్తా యి, మూడో లేయర్‌లో సంక్లిష్ట  
నమూనాలు (Complex Patterns) గుర్తిస్తా యి 
 
4.2​కాన్వల్యూషనల్ న్యూరల్ నెట్‌వర్క్‌లు (Convolutional Neural Networks – CNNs) 
 
మెడికల్ ఇమేజ్ అనాలిసిస్‌లో విస్తృతంగా ఉపయోగించే DL పద్ధతి.ముఖ్యమైన లేయర్లు : Convolution 
Layer – ఫీచర్‌లను ఎక్స్‌ట్రా క్ట్ చేస్తు ంది. Pooling Layer – ఫీచర్ మ్యాప్‌లను చిన్నవిగా మార్చుతుంది 
(Average/Max pooling). Fully Connected Layer – మొత్తం ఇమేజ్‌కి ఫీచర్ ప్రా తినిధ్యం ఇస్తు ంది. 
SoftMax ఫంక్షన్ సాధారణంగా క్లా సిఫికేషన్ కోసం వాడబడుతుంది. AlexNet, VGG-19, InceptionV3, 
ResNet, GoogLeNet వంటి ప్రీ-ట్రెయిన్డ్ CNN మోడల్‌లు DR డిటెక్షన్‌లో వాడబడ్డా యి 
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4.3​జనరేటివ్ అడ్వర్సరీయల్ నెట్‌వర్క్ (Generative Adversarial Network – GAN) 

 
GAN లో రెండు మోడల్స్ ఉంటాయి: Generator – అసలు డేటా లాంటి కొత్త నమూనాలను సృష్టిస్తు ంది, 
Discriminator – సృష్టించినవి నిజమా కాదా అని పరీక్షిస్తు ంది. GAN ఉపయోగాలు: ఇమేజ్ 
సూపర్-రిజల్యూషన్. ఇమేజ్-టు-ఇమేజ్ ట్రా న్స్‌లేషన్ 
 
4.4​U-Net 

ప్రత్యేకంగా బయోమెడికల్ ఇమేజ్ సెగ్మెంటేషన్ కోసం రూపొందించబడింది.రెండు మార్గా లు ఉంటాయి: 
Contracting Path – ముఖ్యమైన కాన్టెక్స్ట్ (Context) ని పట్టు కుంటుంది. Expanding Path – 
ఖచ్చితమైన సెగ్మెంటేషన్ ఇస్తు ంది. సాధారణ CNN కంటే తక్కువ డేటాతో ఎక్కువ ఫలితాలు 
ఇస్తు ంది.DR లో MA, EX, HEM వంటి చిన్న లక్షణాల గుర్తింపులో చాలా సహాయపడుతుంది 
 
 

4.5 ట్రా న్స్‌ఫర్ లెర్నింగ్ (Transfer Learning – TL) 
ఒక పెద్ద డేటాసెట్ (ఉదా: ImageNet – 14 మిలియన్ చిత్రా లు) పై మోడల్‌ని ట్రెయిన్ చేసి, దాన్ని DR 
డేటాసెట్ పై ఫైన్-ట్యూన్ చేస్తా రు, ఇలా చేయడం వలన ట్రెయినింగ్ వేగంగా పూర్తి అవుతుంది. DR 
డేటాబేస్‌లు పరిమితంగా ఉండడం వలన TL చాలా ఉపయోగకరం 

4.6 ఎన్సెంబుల్ లెర్నింగ్ (Ensemble Learning – EL) 
అనేక CNN మోడల్‌లను కలిపి ఒకే ఫలితాన్ని ఇస్తు ంది. పద్ధతులు: Majority Voting, Boosting, 
Averaging, Bagging, Stacking, DR క్లా సిఫికేషన్‌లో ఖచ్చితత్వం పెరుగుతుంది 

 
5. ప్రీప్రా సెసింగ్ (Preprocessing) 
 
ఫండస్ ఇమేజ్‌ను డీప్ లెర్నింగ్ (DL) మోడల్‌కి ఇన్పుట్‌గా ఇవ్వడానికి ముందు కొన్ని ప్రీప్రా సెసింగ్ దశలు 
చేయాలి.ఇవి ఇమేజ్‌లోని చిన్నచిన్న లక్షణాలను (Fine Features) బాగా హైలైట్ చేసి, DR గుర్తింపు 
పనితీరును మెరుగుపరుస్తా యి.ఫండస్ ఇమేజ్‌లు వేరువేరు కెమెరాలు, పరికరాలు, వాతావరణాల్లో  
తీసుకోవడం వలన నాయిస్ (Noise), కాంట్రా స్ట్ మార్పులు, రిజల్యూషన్ తేడాలు వస్తా యి. అందువల్ల 
ప్రీప్రా సెసింగ్ అనేది చాలా అవసరం. 
 
5.1 ఫండస్ ఇమేజ్ డినాయిజింగ్ (Fundus Image Denoising) 
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నాయిస్ ఉన్నప్పుడు తప్పు ఫీచర్లు  కనిపిస్తా యి.నాయిస్ తొలగించడానికి BM3D ఫిల్టర్, Non-local mean 
ఫిల్టర్, Median ఫిల్టర్ లాంటి పద్ధతులు వాడతారు.దీని వలన రక్తనాళాలు, MA వంటి ఫీచర్లు  స్పష్టంగా 
కనిపిస్తా యి. 
5.2 ఫండస్ ఇమేజ్ నార్మలైజేషన్ (Fundus Image Normalization) 
ఇమేజ్‌లోని ప్రతి పిక్సెల్ విలువ ఒకే తరహా పంపిణీ (Distribution) కలిగి ఉండేలా చేస్తు ంది.దీని వలన 
మోడల్ ట్రెయినింగ్ వేగంగా (Faster Convergence) జరుగుతుంది.పిక్సెల్ విలువలను సాధారణంగా [0,1] 
రేంజ్‌లోకి స్కేల్ చేస్తా రు. 
 
5.3 కలర్ చానల్ ఎక్స్‌ట్రా క్షన్ (Fundus Image Color Channel Extraction) 
ఫండస్ ఇమేజ్‌లో మూడు కలర్ చానల్స్ ఉంటాయి: Red, Green, Blue (RGB), Green Channel: MA, 
EX, CWS లాంటివి స్పష్టంగా కనిపిస్తా యి. Red Channel: రక్తనాళాల గుర్తింపులో ఉపయోగకరం, 
అవసరాన్ని బట్టి  RGB ఇమేజ్‌లను HSV, XYZ కలర్ స్పేస్‌కి మార్చుతారు 
 

 

 

Fig3: RGB (a) and splitting to red (b), green (c), and blue (d) channels in the fundus photograph. 

 
5.4 కాంట్రా స్ట్ ఎంహాన్స్‌మెంట్ (Fundus Image Contrast Enhancement) 

వేరువేరు కెమెరాల వలన కాంట్రా స్ట్ మారిపోతుంది. Histogram Equalization-గ్లో బల్ కాంట్రా స్ట్ 
పెంచుతుంది. Adaptive Histogram Equalization (AHE)-స్థా నిక ప్రా ంతాల్లో  కాంట్రా స్ట్ 
మెరుగుపరుస్తు ంది. CLAHE (Contrast Limited AHE) → DR గుర్తింపులో ఎక్కువగా 
వాడబడుతుంది 
దీని వలన MA, చిన్న రక్తస్రా వాలు స్పష్టంగా కనిపిస్తా యి 
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5.5 క్రా పింగ్ మరియు రీసైజింగ్ (Fundus Image Cropping & Resizing) 

వేరువేరు డేటాబేస్‌లలో వేరువేరు రిజల్యూషన్‌లో చిత్రా లు ఉంటాయి,ఎక్కువగా చిత్రం మధ్యభాగం 
(Central Fundus Region) మాత్రమే ఉపయోగపడుతుంది,కాబట్టి  నలుపు బ్యాక్‌గ్రౌండ్ తొలగించి, 
స్క్వేర్ ఆకారంలో క్రా ప్ చేసి, ఒకే సైజ్‌లో రీసైజ్ చేస్తా రు 

 
 
Fig. 4 a Color fundus image. b Green channel image. c CLAHE image 

 
5.6 డేటా ఆగ్మెంటేషన్ (Data Augmentation) 
అసలు మెడికల్ ఇమేజ్‌లు సేకరించడం కష్టం, అందువల్ల ఉన్న ఇమేజ్‌లను మార్పులు చేసి కొత్త 
నమూనాలు తయారు చేస్తా రు,సాధారణ మార్పులు: Rotation, Scaling, Flipping, Affine 
Transformations. ఇలా చేయడం వలన డేటాబేస్ సైజ్ పెరిగి, మోడల్ ఖచ్చితత్వం మెరుగుపడుతుంది 
6. DR గుర్తింపు & విభజన (Segmentation) కోసం ప్రతిపాదించిన పద్ధతుల పోలిక 
 
డయాబెటిక్ రెటినోపతి (DR) గుర్తింపు మరియు సెగ్మెంటేషన్ కోసం పలు పరిశోధకులు సాంప్రదాయ 
పద్ధతులు మరియు డీప్ లెర్నింగ్ (DL) పద్ధతులు ప్రతిపాదించారు. ముఖ్యాంశాలు MA గుర్తింపు 
(Microaneurysms Detection) → DR యొక్క ప్రా రంభ సంకేతం,కొన్ని పద్ధతులు ఫిల్టర్లు  వాడి నాయిస్ 
తొలగించి MA గుర్తించాయి.కాని, కొన్ని మోడళ్లలో ఫాల్స్ పాజిటివ్‌లు ఎక్కువగా వచ్చాయి.EX 
(Exudates) గుర్తింపు → SURF మరియు U-Net మోడళ్లు  వాడబడ్డా యి.OD (Optic Disc) గుర్తింపు → 
DR తీవ్రత అంచనా కోసం అవసరం 
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Table 3: DR గుర్తింపు కోసం ప్రతిపాదించిన పద్ధతుల తులనాత్మక పట్టిక 

రచయిత / పద్ధతి డేటాబేస్ ఉపయోగం 
ఖచ్చితత్వం 

(Acc) 
ఇతర సూచికలు 

(Se / Sp) 

DL పద్ధతి [1] APTOS, Kaggle DR Classification 99.3% 
Se=99.3, 
Sp=99.3 

Snake Algorithm [5] – OD Segmentation 97.75% – 

Non-local Mean Filter 
[11] 

e-Ophtha, ROC, 
DB0, DB1 

MA Segmentation 99% – 

Modified SURF [16] MESSIDOR, DB0, 
DB1, Private 

EX Detection 97% – 

Transfer Learning [27] Kaggle DR Classification 95.68% 
Se=86.47, 
Sp=97.43 

Ensemble Learning 
[31] Private DR Classification 88.21% 

Se=85.57, 
Sp=90.85 

Histogram + GLCM + 
XGBoost [32] 

APTOS DR Classification 94.2% – 

Ensemble CNN [33] Kaggle DR Classification 60.89% 
Se=47.70, 
Sp=85.94 

Two-step CNN [34] e-Ophtha, ROC MA Detection – Se=77.1% 

Modified Xception 
[35] Private DR Classification 83.09% 

Se=88.24, 
Sp=87 

Modified AlexNet [36] MESSIDOR 
DR Classification 
(3-stage) 

96.25% 
Se=92.35, 
Sp=97.45 

MobileNetV2 [43] APTOS DR Classification 91% – 

S-BM3D Filter [47] 
STARE, DRIVE, 
CHASE 

Blood Vessel 
Segmentation 

95.70% 
Se=82.03, 
Sp=97.7 

Operator Splitting [52] Private OD Segmentation 96% – 
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రచయిత / పద్ధతి డేటాబేస్ ఉపయోగం 
ఖచ్చితత్వం 

(Acc) 
ఇతర సూచికలు 

(Se / Sp) 

U-Net [53] IDRiD EX Segmentation 97.95% 
Se=96.38, 
Sp=97.14 

 
7. డీప్ లెర్నింగ్‌లో సవాళ్లు  (DL Challenges in DR Classification/Segmentation) 
డీప్ లెర్నింగ్ (DL) వైద్య ఇమేజింగ్‌లో విస్తృతంగా ఉపయోగపడుతున్నప్పటికీ, దానిని నేరుగా 
ప్రొ డక్షన్-రెడీ టెక్నాలజీగా మార్చడం కష్టం. ప్రధాన సవాళ్లు  కింది విధంగా ఉన్నాయి: 
 
7.1​డేటా-సంబంధిత సవాళ్లు  
వైద్య ఇమేజింగ్‌కు సంబంధించిన డేటాసెట్‌ను కనుగొనడం ఇతర విభాగాల కంటే కష్టతరం. కారణం, కొన్ని 
సందర్భాల్లో  వ్యక్తిగతంగా గుర్తించగలిగే డేటా, మేధో సంపత్తి హక్కులు, ఆర్థిక విలువ, మరియు గోప్యత 
వంటి సమస్యలు ఎదురవుతాయి. ఈ కారణంగా అవసరమైన సమాచారం పొందడం కష్టసాధ్యం 
అవుతుంది. అదనంగా, ఫండస్ ఫోటోలు వేర్వేరు డేటాబేస్‌లలో తీసుకున్నప్పుడు ఉపయోగించిన కెమెరా 
లెన్స్‌లు, పర్యావరణ పరిస్థితులు వంటి అంశాల వల్ల భిన్నంగా ఉండే అవకాశం ఉంది. 
Generalization 
ప్రయోగశాలలో తీసిన ఫండస్ చిత్రా లకు, రియల్‌టైమ్ ఇమేజింగ్‌తో పోలిస్తే గణనీయంగా తక్కువ 
రిజల్యూషన్ ఉంటుంది. ఫండస్ ఇమేజింగ్ డేటాపై అసమానమైన శిక్షణ మరియు పరీక్షలు జరపడం వల్ల 
వాస్తవ మోడళ్లలో లోపాలు కలుగవచ్చు. ఈ సమస్యలను తగ్గించడానికి డేటాసెట్ ప్రా మాణీకరణ 
(standardization) మరియు పరస్పర అనుకూలత (interoperability) అత్యంత ముఖ్యమైనవి. ఫండస్ 
ఇమేజింగ్ ఫలితాలు, ఉపయోగించే సెన్సార్ రకం మరియు హార్డ్వేర్ వాతావరణం ఆధారంగా గణనీయంగా 
మారుతూ ఉంటాయి. డీప్ లెర్నింగ్ ద్వారా వైద్య ఇమేజింగ్ ఖచ్చితత్వాన్ని మెరుగుపరచాలంటే, బహుళ 
ఫండస్ డేటాసెట్లను విలీనం చేయడం అవసరం. అయితే, దాని ప్రా ధాన్యత ఉన్నప్పటికీ, ఆరోగ్య రంగంలో 
పరస్పర అనుకూలత సాధించడం ఇప్పటికీ ఒక ప్రధాన సవాలుగా మిగిలి ఉంది. ప్రపంచవ్యాప్తంగా డేటా 
సేకరణలో స్థిరత్వం ఉండాలంటే, ఫండస్ చిత్రా లను ఒక విధానపూర్వక మార్గదర్శకాలు మరియు 
ప్రమాణాలను అనుసరించి తీసుకోవాలి. 
 
Sampling Bias and Data Collecting 
 
సాధారణంగా చెప్పాలంటే, DR రోగుల నుండి తీసిన ఫండస్ ఫోటోలను అదే రోగి నుండి తీసిన నిజమైన 
ఆరోగ్యకరమైన ఫండస్ ఫోటోలతో పోల్చడం కష్టమవుతుంది. ఫలితంగా, వచ్చిన నమూనా ఉన్న 
ఆరోగ్యకరమైన ఫండస్ ఫోటోలతో పోలికకు సరిపోడు. ఈ విభిన్న డేటాబేస్‌లను కలిపినప్పుడు డేటా లీకేజ్ 
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సంభవిస్తు ంది, ఇది ఒక తీవ్రమైన ఆందోళన. తగినంత శాంప్లింగ్ లేకపోతే సంబంధం లేని నమూనాలు 
ఉత్పత్తి కావచ్చు, అలాగే డేటా స్టిచింగ్ తప్పు మోడల్ నిర్మాణాన్ని కలిగిస్తు ంది. 
 
The Multi-modal Nature 
DL (Deep Learning) మోడళ్లను, DR పరిస్థితి లక్షణాలను అనేక కోణాల నుంచి అర్థం చేసుకునేందుకు, 
బహుళ ఫండస్ డేటాబేస్‌లతో శిక్షణ ఇవ్వాలి. 
 
 
7.2 వైద్య నిపుణుల కొరత (Availability of Ophthalmologists) 
నైపుణ్యం లభ్యత (Availability of Expertise) 
 
భారతదేశంలో నేత్రవైద్యుల అందుబాటు అత్యల్ప స్థా యిలో ఉంది. ప్రస్తు తం, ప్రతి ఒక లక్ష మంది 
జనాభాకు కేవలం ఒక నేత్రవైద్యుడు మాత్రమే లభిస్తు న్నాడు. కానీ, ప్రపంచ ఆరోగ్య సంస్థ (WHO) 
సిఫార్సుల ప్రకారం ప్రతి 20,000 మందికి కనీసం ఒక నేత్రవైద్యుడు ఉండాలి. అందుబాటులో ఉన్న 
వైద్యులలో డీప్ లెర్నింగ్ (DL) సాంకేతిక పరిజ్ఞా నం కలిగిన వారు అత్యంత అరుదుగా కనిపిస్తు న్నారు. 
ఆటోమేటిక్ డయాబెటిక్ రెటినోపతి (DR) గుర్తింపు వ్యవస్థలు రూపకల్పన చేయడం మరియు మోడళ్లను 
శిక్షణ ఇవ్వడం విస్తృతమైన సమయం, శ్రమ, మరియు ప్రత్యేక నైపుణ్యం అవసరపరుస్తా యి. ప్రస్తు త 
పరిస్థితుల్లో  ఇవన్నీ పరిమితంగా లభిస్తు న్నాయి. అదనంగా, క్వాసి-లేబెలింగ్, యాక్టివేషన్ మ్యాప్స్‌పై 
ఆధారపడటం, మరియు అనోటేషన్ల కొరత వంటి సవాళ్లు  నిపుణుల జోక్యాన్ని తప్పనిసరిగా చేస్తు న్నాయి. 
DR గ్రేడింగ్ లేదా విభజన (Segmentation) ప్రక్రియలో సరైన రీజియన్లను గుర్తించడం అత్యంత కీలకం. 
కేవలం వర్గీకరణ (Bucketing) పద్ధతులు సరిపోవు. సరైన దృష్టి ప్రా ంతాలను గుర్తించడంలో విఫలమైతే, 
అల్గో రిథమ్స్ తప్పు నమూనాలను నేర్చుకునే ప్రమాదం ఉంది. 
 
 
 
 ఫీచర్ ఇమేజింగ్ (Feature Imaging) 
ఫండస్ చిత్రా లపై ఆధారపడి చేసిన అన్ని ఆగ్మెంటేషన్ డేటా (Augmented Fundus Image Data) ఫీచర్ 
ఎక్స్ట్రాక్షన్ (Feature Extraction) లో సమర్థవంతం కాకపోవచ్చు. ఉదాహరణకు, రెటినా స్క్రీనింగ్ కోసం 
కొత్త ఫీచర్ ఇంజినీరింగ్ (Feature Engineering) విధానాలు అవసరం అవుతాయి. దీనికోసం ప్రత్యేకంగా 
వేరువేరు డేటాసెట్‌లు మరియు ప్రొ ఫెషనల్ నేత్రవైద్యుల నైపుణ్యం అనివార్యం. 
 
7.3 ప్రొ డక్షన్ సమస్యలు (Production Issues) 

●​ స్టా ండర్డ్స్ లేకపోవడం 
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వైద్య డేటాకు DICOM, PACS వంటి అంతర్జా తీయ ప్రమాణాలు అవసరం.కానీ అన్ని ఫండస్ డేటాబేస్‌లు 
ఒకే ప్రమాణాలు పాటించకపోవడం వల్ల సమస్యలు వస్తా యి. 

●​ ఆర్కిటెక్చర్ సమస్యలు 
సరైన DL ఆర్కిటెక్చర్ (ఉదా: ResNet, VGGNet) వాడకపోతే ఖచ్చితత్వం తగ్గు తుంది. 
 
7.4 బ్లా క్ బాక్స్ సమస్య (Black Box Problem) 
DL మోడల్స్ చాలా ఖచ్చితంగా పనిచేసినా, తీర్మానాలు ఎలా తీసుకుంటున్నాయో అర్థం కావడం 
కష్టం. ఇది సాధారణ వ్యక్తికి, డాక్టర్‌కీ వివరించడం కష్టమవుతుంది.కాబట్టి  "Explainable AI" అవసరం. 
 
7.5 క్లా స్ ఇంబాలెన్స్ సమస్య (Class Imbalance Problem) 

పబ్లిక్ డేటాబేస్‌లలో హెల్థీ ఇమేజ్‌లు ఎక్కువ, DR ఇమేజ్‌లు తక్కువ.దీని వలన మోడల్ ఎక్కువగా 
హెల్థీ  క్లా స్ వైపు మొగ్గు  చూపుతుంది. క్లినికల్ డేటాలో కూడా DR వివరాలతో పాటు పేషెంట్ హిస్టరీ, 
వయస్సు, రక్తపోటు లాంటివి ఉంటాయి → ఇవి DL మోడల్‌లో సమీకరించడం కష్టం. 

7.6 డేటా ప్రైవసీ మరియు లీగల్ సమస్యలు (Data Privacy and Legal Issues) 
రియల్-టైమ్ ఫండస్ ఇమేజ్‌లు వాడితే పేషెంట్ వ్యక్తిగత సమాచారం బయటపడే ప్రమాదం ఉంది. 
HIPAA (Health Insurance Portability and Accountability Act, 1996) ప్రకారం పేషెంట్ డేటా 
రక్షించాలి. కానీ డేటా లీక్ అయితే లీగల్ మరియు ఎథికల్ ఇష్యూస్ వస్తా యి. 
 
8. డీప్ లెర్నింగ్ అవకాశాలు (DL Opportunities) 
డయాబెటిక్ రెటినోపతి (DR) గుర్తింపులో డీప్ లెర్నింగ్ పద్ధతులు అనేక అవకాశాలను కలిగి ఉన్నాయి. 
ఇవి సవాళ్లను తగ్గించి, DR స్క్రీనింగ్‌ను మరింత సమర్థవంతంగా చేయగలవు. 
ముఖ్య అవకాశాలు 

●​ డేటా లభ్యత పెంచడం 
o​ క్రౌ డ్‌సోర్సింగ్ ద్వారా ఎక్కువ మెడికల్ ఇమేజ్‌లు సేకరించవచ్చు. 
o​ డేటా డెమోక్రటైజేషన్ ద్వారా రీసెర్చర్లు  డేటాసెట్‌లను ఉచితంగా లేదా ఓపెన్ యాక్సెస్ 

ద్వారా ఉపయోగించుకోవచ్చు. 
●​ ఒకే విధమైన డేటాసెట్ లైబ్రరీ సృష్టించడం 

o​ అన్ని ఫండస్ డేటాసెట్‌లు ఒకే ప్రమాణాలను పాటిస్తే, మోడల్ పనితీరు మెరుగవుతుంది. 
o​ డేటా ఆగ్మెంటేషన్ ద్వారా అసలు డేటా లాంటివి తయారు చేసి, ట్రైనింగ్ మరియు 

ప్రొ డక్షన్ డేటా మధ్య తేడాలను తగ్గించవచ్చు. 
●​ సాంప్లింగ్ బయాస్ తగ్గించడం 

o​ ఒకే వయసు, భౌగోళిక ప్రదేశం, యానోటేషన్ ప్రమాణాలతో డేటా సేకరించడం ద్వారా డేటా 
లీకేజ్ తగ్గించవచ్చు. 
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●​ నిపుణుల లభ్యత పెంచడం 
o​ కంటి వైద్యులు (Ophthalmologists) కొరత ఉన్నందున, ఇంటర్న్స్ మరియు ట్రైనింగ్ 

పొందిన అసిస్టెంట్స్ ద్వారా డేటా లేబులింగ్, టూల్స్ వాడటం వంటి పనులు 
చేయించవచ్చు. 

o​ నిపుణుల సమూహం (Expert Groups) ద్వారా మోడల్ ట్రైనింగ్ వేగవంతం అవుతుంది. 
●​ సమయం మరియు ఖర్చు ఆదా 

o​ ఆర్టిఫాక్ట్స్ తొలగించడం (ఉదా: ఇమేజ్‌లలో నల్ల బోర్డర్స్, అనవసరమైన భాగాలు) 
ద్వారా ట్రైనింగ్ వేగంగా జరుగుతుంది. 

o​ సరైన డేటా ప్రా సెసింగ్ వల్ల మోడల్ ఖచ్చితత్వం మరియు విశ్వసనీయత 
పెరుగుతుంది. 

 
9. ముగింపు (Conclusion) 
డయాబెటిక్ రెటినోపతి (DR) అనేది దృష్టి కోల్పోవడానికి ప్రధాన కారణం.​
ప్రపంచవ్యాప్తంగా DR రోగుల సంఖ్య వేగంగా పెరుగుతోంది, కానీ కంటి వైద్యుల సంఖ్య పరిమితంగా 
ఉండడం వల్ల ప్రతి రోగిని మాన్యువల్‌గా పరీక్షించడం సాధ్యం కాదు. 
ఈ అధ్యాయం లో: 

●​ DR దశలు, లక్షణాలు, మరియు రిస్క్ ఫ్యాక్టర్స్ వివరించబడ్డా యి. 
●​ DR గుర్తింపు కోసం ఉపయోగించే పబ్లిక్ ఫండస్ డేటాబేస్‌లు పరిచయం చేయబడ్డా యి. 
●​ DR గ్రేడింగ్ మరియు లీజన్ సెగ్మెంటేషన్ కోసం డీప్ లెర్నింగ్ పద్ధతులు (CNN, GAN, U-Net, 

Transfer Learning, Ensemble Learning మొదలైనవి) వివరించబడ్డా యి. 
●​ DR గుర్తింపులో ప్రీప్రా సెసింగ్ స్టెప్స్ (డినాయిజింగ్, నార్మలైజేషన్, కాంట్రా స్ట్ ఎంహాన్స్‌మెంట్, డేటా 

ఆగ్మెంటేషన్ మొదలైనవి) యొక్క ప్రా ముఖ్యత చర్చించబడింది. 
●​ DR గుర్తింపు కోసం ప్రతిపాదించిన వివిధ పద్ధతుల పోలిక ఇవ్వబడింది. 
●​ చివరగా, DL ఆధారిత DR గుర్తింపులో ఉన్న సవాళ్లు  మరియు అవకాశాలు పరిశీలించబడ్డా యి. 

మొత్తం మీద, డీప్ లెర్నింగ్ ఆధారిత పద్ధతులు DR ను త్వరగా, తక్కువ ఖర్చుతో, అధిక 
ఖచ్చితత్వంతో గుర్తించగలవు. 
 
10. Future Scope 
 
భవిష్యత్ పరిశోధనల్లో  ప్రధాన దృష్టి ఈ అంశాలపై ఉండాలి: 

●​ మరింత పెద్ద మరియు విభిన్నమైన డేటాసెట్‌ల సేకరణ 
●​ స్టా ండర్డైజ్డ్  ప్రో టోకాల్‌లు ఏర్పాటు చేయడం (అన్ని ఫండస్ డేటాబేస్‌లకు ఒకే ప్రమాణం ఉండేలా) 
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●​ Explainable AI అభివృద్ధి చేయడం → మోడల్ తీసుకునే నిర్ణయాలను వైద్యులు మరియు 
రోగులు సులభంగా అర్థం చేసుకునేలా చేయడం 

●​ ఫెడరేటెడ్ లెర్నింగ్ వాడటం → డేటా ప్రైవసీ సమస్యలను తగ్గిస్తూ , అనేక ఆసుపత్రు ల డేటాను 
ఒకే మోడల్ ట్రెయినింగ్‌కి ఉపయోగించడం 

●​ రియల్-టైమ్ DR గుర్తింపు సిస్టమ్‌లు అభివృద్ధి చేయడం → ఇవి దూర ప్రా ంతాల్లో , వైద్యులు 
తక్కువగా ఉన్న ప్రదేశాల్లో  చాలా ఉపయోగకరం 

ఈ అభివృద్ధు లు జరిగితే, DR స్క్రీనింగ్ మరింత సమర్థవంతం, విశ్వసనీయంగా, అందరికీ 
అందుబాటులో ఉండేలా అవుతుంది. 
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