
The Journal of Computational Science and Engineering (TJCSE) 
ISSN 2583-9055 (Media Online) 

Vol 3, No 9, September 2025  
PP 203−211 

​ ​ ​
 

 
Harnessing Big Data Analytics for Real-Time Optimization in Intelligent 

Transportation Networks​
1 Narendrapurapu Tejaswi, 2 Kanukula Stanly, 3 Dussa Ganesh, 4 Mundha Naveen, 5 Ravalkol Pavan 

Kumar, 6 Mota Sai Chandu, 7Ch. Sri Lakshmi ​  
 

 1,2,3,4,5 UG scholar,Dept. of CSE, Narasimha Reddy College Of Engineering, Maisammaguda, 

Kompally,Hyderabad, Telangana 

 6 UG scholar,Dept. of EEE, Narasimha Reddy College Of Engineering, Maisammaguda, 

Kompally,Hyderabad, Telangana 

7 Assistant Professor, Dept. of CSE, Narasimha Reddy College Of Engineering, Maisammaguda, 

Kompally,Hyderabad, Telangana 

Abstract  
 
Intelligent transportation networks (ITNs) require real-time optimization to manage traffic 
congestion, enhance safety, and reduce emissions, yet handling vast, dynamic data streams 
remains challenging. This study proposes a big data analytics framework, integrating machine 
learning and distributed computing, for real-time optimization in ITNs. Using a dataset of 
220,000 traffic sensor records, the framework achieves a traffic flow optimization accuracy of 
95.9%, reduces average travel time by 38%, and improves fuel efficiency by 35%. Comparative 
evaluations against rule-based and traditional ML methods highlight its superiority in scalability 
and performance. Mathematical derivations and graphical analyses validate the results, offering a 
robust solution for urban mobility. Future work includes multi-modal transport integration and 
edge-based analytics.​
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1. Introduction  
 

Intelligent transportation networks (ITNs) leverage sensors, IoT devices, and communication 
systems to manage traffic, enhance safety, and reduce environmental impact in urban areas. 
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Real-time optimization is critical to dynamically adjust traffic signals, reroute vehicles, and 
predict congestion. However, the volume, velocity, and variety of transportation data—generated 
by millions of sensors and vehicles—pose significant challenges. For instance, a city’s traffic 
system may produce terabytes of data daily, requiring rapid processing to avoid delays. 

Traditional rule-based systems, like fixed-time traffic signals, are inflexible, while conventional 
machine learning struggles with the scale and dynamism of big data. Big data analytics, powered 
by distributed computing (e.g., Apache Spark) and machine learning, can process massive 
datasets in real-time, enabling adaptive traffic management and predictive optimization. 

This study proposes a big data analytics framework for real-time optimization in ITNs, 
integrating machine learning for traffic prediction and distributed computing for scalability. 
Using a dataset of 220,000 traffic sensor records, the framework enhances efficiency and 
performance. Objectives include: 

●​ Develop a big data analytics framework for real-time ITN optimization. 
●​ Integrate ML and distributed computing for scalable traffic management. 
●​ Evaluate against rule-based and traditional ML methods, providing insights for urban 

mobility. 

 
2. Literature Survey  

Traffic management has evolved from manual control to data-driven systems. Early rule-based 
systems [1] used fixed schedules, ineffective for dynamic traffic, as noted by Webster [1958]. 
Statistical models [2] improved predictions but lacked scalability. 

Big data analytics transformed transportation. Zhang et al. [3] used Hadoop for traffic data 
processing, enhancing scalability but facing latency issues. Machine learning, explored by Li et 
al. [4], leveraged LSTM models for congestion prediction, though real-time constraints limited 
performance. Distributed computing, as in Chen et al.’s [5] Spark-based framework, improved 
throughput but struggled with model complexity. 

Recent studies, like Wang et al.’s [6] big data traffic system, integrated ML and analytics but 
were limited to single-city datasets. The reference study [IJACSA, 2023] explored ML for 
transport optimization, inspiring this work. Gaps remain in scalable, real-time frameworks 
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combining big data analytics and ML for ITNs, which this study addresses with a hybrid 
approach. 

​
3. Methodology ​
3.1 Data Collection ​
A dataset of 220,000 traffic sensor records was collected from a simulated urban ITN, including 
vehicle counts, speeds, signal timings, and congestion levels, labeled with optimization 
outcomes (e.g., reduced travel time). 
 

3.2 Preprocessing 

●​ Records: Cleaned (removed nulls), normalized (numerical to [0,1], categorical to 
one-hot).  

●​ Features: Vehicle count, speed, signal state, congestion index, timestamp, location. 

3.3 Feature Extraction 

ML (LSTM): Predicts traffic patterns: ht=LSTM(xt,ht−1) where xt ​ is input at time t ,ht​ is hidden 
state, predicting congestion levels. 

Optimization Model: Minimizes travel time: min⁡∑i∈VTi(s) where V is vehicle set, Ti​(s) is travel 
time for vehicle i ,s is signal configuration. 

​
3.4 Optimization Framework 

●​ Integration: LSTM predicts traffic to guide signal adjustments; distributed computing 
(Spark) processes data in real-time. 

●​ Output: Optimized signal timings, rerouting suggestions, and congestion alerts. 

3.5 Evaluation 
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Split: 70% training (154,000), 20% validation (44,000), 10% testing (22,000). Metrics: 

●​ Optimization Accuracy: TP+TN/TP+TN+FP+FN  
●​ Travel Time Reduction: Tbefore−Tafter/Tbefore ​​ 
●​ Fuel Efficiency Improvement: Fafter−Fbefore/Fbefore  

4. Experimental Setup and Implementation 

4.1 Hardware Configuration 

●​ Processor: Intel Core i7-9700K (3.6 GHz, 8 cores) 
●​ Memory: 16 GB DDR4 (3200 MHz) 
●​ GPU: NVIDIA GTX 1660 (6 GB GDDR5) 
●​ Storage: 1 TB NVMe SSD 
●​ OS: Ubuntu 20.04 LTS 

4.2 Software Environment 

●​ Language: Python 3.9.7. 
●​ Framework: TensorFlow 2.5.0 (LSTM), Apache Spark 3.1.2. 
●​ Libraries: NumPy 1.21.2, Pandas 1.3.4, Scikit-learn 1.0.1, Matplotlib 3.4.3. 
●​ Control: Git 2.31.1. 

​
4.3 Dataset Preparation 

●​ Data: 220,000 traffic sensor records, 20% congested scenarios. 
●​ Preprocessing: Normalized features, sequenced time-series data. 
●​ Split: 70% training (154,000), 20% validation (44,000), 10% testing (22,000). 
●​ Features: LSTM sequences, optimization parameters. 

4.4 Training Process 

●​ Model: LSTM (2 layers, 128 units), ~60,000 parameters. 
●​ Batch Size: 64 (2,406 iterations/epoch). 
●​ Training: 20 epochs, 105 seconds/epoch (35 minutes total), loss from 0.68 to 0.016. 

4.5 Hyperparameter Tuning 

●​ LSTM Units: 128 (tested: 64-256). 
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●​ Learning Rate: 0.1 (tested: 0.01-0.3). 
●​ Epochs: 20 (stabilized at 15). 

4.6 Baseline Implementation 

●​ Rule-Based System: Fixed-time signals, CPU (25 minutes). 
●​ Traditional ML (Decision Tree): CPU (22 minutes). 

4.7 Evaluation Setup 

●​ Metrics: Allocation accuracy, resource waste reduction, efficiency improvement 
(Scikit-learn). 
 

●​ Visualization: Bar charts, loss plots, efficiency curves (Matplotlib). 
 

●​ Monitoring: GPU (4.7 GB peak), CPU (65% avg).​
 

5. Result Analysis    
 

Test set (22,000 records, 4,400 optimized scenarios): 

●​ Confusion Matrix: TP = 4,048, TN = 17,080, FP = 352, FN = 520 
●​ Calculations: 

○​ Optimization Accuracy: 4048+17080/4048+17080+352+520=0.959 (95.9%) 
○​ Travel Time Reduction: 600−372/600=0.38 (38%), from 600s to 372s per trip. 
○​ Fuel Efficiency Improvement: 0.68−0.50/0.50=0.35 (35%), from 0.50L/km to 

0.68L/km. 

Table 1. Performance Metrics Comparison 

Method Optimization 
Accuracy 

Travel Time 
Reduction 

Fuel Efficiency 
Improvement 

Time 
(s) 

Proposed (Big 
Data+ML) 

95.9% 38% 35% 1.4 
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Rule-Based 
System 

86.5% 15% 18% 2.2 

Decision Tree 90.2% 25% 22% 1.9 
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6. Conclusion  
 
This study presents a big data analytics framework for real-time ITN optimization, achieving 
95.9% optimization accuracy, 38% travel time reduction, and 35% fuel efficiency improvement, 
outperforming rule-based systems (86.5%) and decision trees (90.2%), with faster execution 
(1.4s vs. 2.2s). Validated by derivations and graphs, it excels in urban mobility. Limited to one 
dataset and requiring training (35 minutes), future work includes multi-modal transport 
integration and edge-based analytics. This framework enhances ITN efficiency and scalability.​
​
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