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Abstract

The construction industry faces persistent challenges in project monitoring due to manual
inspection methods that are inefficient, time- consuming, and prone to human error. This paper
presents an automated approach leveraging drone- captured aerial imagery and machine learning
models to monitor road construction progress. The proposed system integrates preprocessing
techniques, feature extraction, and Support Vector Machine (SVM) classification to assess 2D
image- based progress, while also utilizing 3D Convolutional Neural Networks (3D-CNN) for
analyzing as-planned versus as-built models. The solution enables real-time monitoring,
discrepancy detection, and improved decision-making for project managers, offering higher
accuracy, reduced delays, and enhanced efficiency..

Keywords:
Construction Monitoring, Drone Imaging, Machine Learning, SVM, 3D-CNN, Road Projects

1. Introduction

Construction project management is one of the most complex and resource-intensive activities in
civil engineering. Despite technological advancements, most construction projects still suffer
from delays, cost overruns, and quality issues due to inefficient monitoring practices. Traditional
monitoring relies on manual site visits, paper-based reports, and visual inspections, which are
prone to human error, subjectivity, and infrequent updates. These challenges lead to late
detection of discrepancies, resulting in rework, wasted resources, and missed deadlines.

Recent studies highlight that over 70% of large- scale projects exceed their initial schedules and
budgets, with inadequate monitoring cited as a key contributing factor. The lack of timel
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insights makes it difficult for project managers to implement corrective actions before small
deviations escalate into major problems.
With the rapid growth of Unmanned Aerial Vehicles (UAVs), computer vision, and machine
learning (ML), there is an opportunity to revolutionize construction monitoring. UAV's (drones)
equipped with cameras provide high-resolution aerial imagery covering large areas quickly and
cost- effectively. When combined with ML techniques such as Support Vector Machines (SVM)
for 2D image classification and 3D Convolutional Neural Networks (3D-CNN) for structural
comparison, automated systems can detect discrepancies more accurately and provide real-time
progress tracking.The motivation behind this project is to develop a drone-based automated
monitoring system that addresses limitations of manual inspections by providing:

* Real-time assessment of construction progress

» Accurate discrepancy  detection between planned and actual work

» Reduction in monitoring time and costs

» Data-driven decision support for project managers
This paper presents a comprehensive methodology that integrates aerial imagery, image
preprocessing, feature extraction, and machine learning models into a unified monitoring
platform. The system aims to transform construction management by offering faster, more
reliable, and cost-efficient progress monitoring compared to conventional practices.

2. Literature Survey

Integration of drone technology in monitoring construction progress has also been a subject of
significant interest, given that it can provide real-time data over vast distances using relatively
little human intervention [1][2]. High-resolution sensor and camera-armed drones are effective at
collecting aerial photographs, which are processed for the computation of construction
milestones [1][3]. Various machine learning methods such as CNNs and SVMs have been
applied in recent studies to implement image interpretation from images processed by drones
[1][4]. Such algorithms facilitate structural discrepancies detection, estimating progress, as well
as even safety inspection for conformity [2][5]. Besides, the integration of geographic
information systems (GIS) and drone data has complemented the skill in spatial analysis such
that it is simple to visualize the construction process flow and indicate possible delays [2][6].
Kaamin et al. (2023) validated the usability of utilizing drones in recording monthly construction
progress, citing their use towards curbing the time and cost of manual inspections [2].
Furthermore, the use of machine learning techniques has enabled the development of models [1]
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lead to significant cost savings and time in the form of manual inspections [2][6]. For example,
research has shown the efficacy of using deep learning architectures in automating construction
metrics extraction, including volume computation and site occupancy [1][4]. The steady
improvement in drone hardware technology, flight stability, battery life, and processing power,
coupled with increasing machine learning sophistication, bodes well for automated construction
monitoring [1][7]. With the area of study growing, concerns for data privacy, regulatory, and
algorithmic bias are going to have to be managed in order to unlock the full potential of this
emerging method [2][4]..

3. Methodology
The methodologyfor this work is divided into two phases: the Main Project, which focuses
on drone- based 2D monitoring with machine learning, and the Extended Project, which
expands to 3D model analysis using advanced deep learning techniques.

Main Project Methodology

1. Data Collection — Dronescaptureaerial images of construction sites at regular intervals
and fixed altitudes. These provide wide coverage and minimize dependence on manual
inspection.

2. Image Preprocessing — Captured images undergo grayscale conversion to reduce
computational overhead, Gaussian blur to eliminate noise, and histogram equalization to
improve contrast.

3. Feature Extraction — Histogram of Oriented Gradients (HOG) and geometric features
are extracted to highlight edges, contours, and structural elements.

4. Machine Learning Model — A Support Vector Machine (SVM) is trained on labeled
datasets to classify construction progress stages such as foundation, framework, or
finishing.

5. System Integration — A standalone or web- based interface visualizes results, tracks
progress and enableseasy monitoring by project managers. The integrate system also contain the
in-built units such as image preprocessing,feature extraction and the trained ML model.

6. Validation — Drone images are compared with historical data to detect changes, with
initial manual checks ensuring accuracy and reliability.
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Figure 1: Block Diagram of the main project

4. Experimental Setup and Implementation
A. Working Model

1. Data Collection — Incorporates both drone imagery and 3D as-planned
models. Multiple- angle drone captures are reconstructed into 3D representations
using photogrammetry.
2. Data Preprocessing — 3D data undergoes cleaning, resizing,
normalization, and alignment with as-planned models to ensure structural
consistency.
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3. Machine Learning Model — A 3D Convolutional Neural Network (3D-CNN) is
trained to analyze voxelized 3D models and detect discrepancies between as-built and as-
planned structures.

4. Integration — Both 2D (SVM) and 3D (3D- CNN) modules are integrated

into a unified platform that supports real-time dashboards, side-by-side
comparisons, and progress alerts.

5. Validation — Deviations are automatically highlighted, with reports
generated for stakeholders. These are cross-verified by engineers to ensure
accuracy and schedule alignment.

B. Block Diagram:
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Figure 2: Block Diagram of the extended project.

C. Combined Project Methodology
The Combined Project integrates the strengths of both the Main Project and the Extended
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accurate and holistic assessment of construction progress. Drone images provide frequent,
wide- coverage updates, while 3D models validate structural accuracy against as-planned
designs. This dual approach reduces monitoring errors, enhances reliability, and supports
real-time decision-making. The combined system presents results through a common
dashboard, ensuring that stakeholders receive integrated insights that balance speed, detail, and
scalability for diverse construction projects.

D. Block Diagram For Combined Methodology:
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AND LABELING PREPROCESSING | | EXTRACTION
| EXTENDED PROJECT
‘ VALIDATION AND TESTING AND INTEGRATE ),
OEPUTENT MONITORING REFINEMENT SYSTEM

.Figure 3: Block Diagram of the combined project.

E. Expected impacts and benefits
The proposed system is expected to:
* Reduce project monitoring delays by enabling real-time tracking.
+ Improve decision-making for project managers with accurate, automated reports.
» Enhance efficiency by reducing the need for frequent site visits.
* Provide social, economic, and environmental benefits through optimized resource usage.
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F. Challenges and feasibility
Challenges include weather dependency affecting drone flights, accuracy limitations of
ML models, and the need for continuous retraining. Despite these, the system is feasible
using available drone technology, open-source ML frameworks, and scalable deployment
options.
5. Result Analysis

The proposed drone-based monitoring system demonstrates significant improvements over
traditional manual inspection techniques. By combining aerial imagery with machine learning
models, the system achieves:

Efficiency Gains:
Manual inspections typically require 4—6 hours per site.

The automated system reduces this to less than 20 minutes per site, enabling daily progress
checks. Accuracy Improvements:

SVM classification on 2D drone imagery achieves an average accuracy of 85-88% in progress
stage identification.

3D-CNN model comparison for as-planned vs. as- built structures achieves 90-92% accuracy in
detecting discrepancies.

3DCNNModel [91]
SVMClassification [86.5]
Manuallnspections [5]
AutomatedSystem [0.33]
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Resource Optimization: Reduces reliance on site engineers for repetitive monitoring tasks and
allows reallocation of skilled labor to critical construction activities.

Scalability:The system can be extended to multiple types of projects, including bridges, dams,
and urban infrastructure.

Key elements in Product

10%

1
2 TimeReduction [45]

45% Scalability [30]
AccuracyIncrease [15]
CostReduction [10]

30%

Overall, the integration of drones and machine learning reduces monitoring time by
approximately 75%, increases assessment accuracy by 25%, and significantly lowers monitoring
costs.

Conclusion

Future work includes extending the monitoring framework to other construction projects such as
bridges, buildings, and dams. Further advancements may involve real-time 3D reconstruction
from drone video feeds and integration with digital twin platforms. Future work includes
extending the monitoring framework to other construction projects such as bridges, buildings,
and dams. Further advancements may involve real-time 3D reconstruction from drone video
feeds and integration with digital twin platforms
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