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Abstract  
Wireless Sensor Networks (WSNs) are increasingly deployed across various application 
domains. Despite their potential advantages, WSNs face persistent challenges due to 
the resource-constrained nature of sensor nodes, particularly in energy efficiency, 
routing optimization, and reliable data delivery. This study proposes a machine 
learning-enhanced RPL protocol to optimize energy-aware routing in WSNs. Two 
methodologies were developed: the first one is a baseline implementation of RPL-OF0, 
and the other one is integrating Random Forest (RF) and Support Vector Machine 
(SVM) algorithms with RPL for dynamic path selection. The framework was across two 
topologically distinct scenarios—uniform and random node distributions—using metrics 
such as energy consumption, and end-to-end (E2E) delay. Key parameters included 
26–50 nodes, 200–400m deployment areas and energy models accounting for 
transmission, reception, and aggregation costs,and using one sink and two sink 
techniques The results indicated that the integration of RF with the RPL protocol 
significantly outperformed both SVM-enhanced RPL and standard RPL-OF0 in one sink 
, achieving the most significant reduction in energy consumption across all scenarios. 
Specifically, RPL-RF achieved a 24.7% reduction in average energy consumption in 
dense networks. While RPL-SVM showed moderate improvements in E2E delay, 
Moreover, the adoption of a two-sink architecture produced substantial additional 
energy savings over single-sink deployments, with average power consumption further 
reduced by 38–43% across all scenarios and routing protocols, particularly in 
large-scale and randomly deployed networks. This demonstrates that combining 
multi-sink deployment with machine learning-driven routing substantially enhances 
energy efficiency and scalability in WSNs.In all cases and in every part of the network, 
the SVM method shows the best way to cut delays and grow, followed by RF. The RF 
method also usually does better than the old OF0 rule.In all cases and in every part of 
the network,the E2E delay in two sink is better than one sink by almost 20%. Overall, 
these findings demonstrate that integrating machine learning-driven enhancements into 
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the RPL protocol substantially improves energy efficiency, path reliability, and network 
longevity in WSNs. 
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1.​ Introduction 
In recent years, significant advancements in information technology and the rise of the Internet of 
Things (IoT) have facilitated the integration of the physical environment with digital systems, 
allowing smart applications to communicate with each other in real-time, which results in 
improvements in automation, enhanced efficiency, and solutions to various problems across different 
sectors in daily life [1]. Wireless sensor network (WSN) is considered a cornerstone of IoT that 
consists of many distributed autonomous sensors responsible for monitoring environmental 
conditions such as temperature, humidity, light, motion, and sound. WSNs play a significant role in 
collecting and transmitting data through sensors that communicate wirelessly [2]. There are several 
disadvantages to sensor technology, including its cost-effectiveness and the limited resources 
available for storage/computing on/off and energy consumption. Nonetheless, these resources 
facilitate user engagement in reacting promptly to changing environmental circumstances. They also 
help to develop effective strategies for addressing environmental issues [3]. A WSN faces several 
challenges, including high power consumption, high bandwidth demand and data security concerns. 
Furthermore, wireless communications are often subject to interference from other devices, resulting 
in poor data transmission quality. Among all these challenges, energy efficiency remains the most 
critical in WSN design.  To overcome   the above challenge  inexpensive,low-power, multi-functional 
sensor nodes based on energy-efficient control protocols have been designed to ensure long-term 
operation and improve overall network performance by selecting protocols that contribute to reducing 
energy consumption, effectively improving data distribution and achieving excellent reliability[4].  
2.​ Methods and Materials 
This section presents a concise description of the material, protocol, algorithm, and network used in 
designing the proposed system. 
2.1  Routing Protocol Low (RPL)The Routing Protocol for Low-Power and Lossy Networks 
(RPL) utilizes a hierarchical structure known as Destination-Oriented Directed Acyclic 
Graphs (DODAGs), which are a specific form of Directed Acyclic Graph (DAG) with a 
single destination root[5,6].RPL used four primary control messages types to manage 
network topology and communication, as outlined in [7,8,9]: 
•DODAG Information Object (DIO): This message includes routing metrics and the 
objective function (OF) used by nodes to advertise RPL instances. It allows neighboring 
nodes to discover an RPL instance, obtain configuration parameters, and select a preferred 
parent within a Destination Oriented Directed Acyclic Graph (DODAG). 
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•DODAG Information Solicitation (DIS): A node transmits this message when it intends to 
join a DODAG but has not received any DIO announcements. The DIS message triggers 
neighboring nodes to respond with DIOs. 
•Destination Advertisement Object (DAO): This message is used by a child node to advertise 
downward routes. In storing mode, DAO messages are unicast to selected parent nodes, 
which store routing tables. In non-storing mode, DAO messages are forwarded directly to the 
DODAG root for centralized route management. 
Destination Advertisement Object Acknowledgment (DAO-ACK): This control message 
serves as a confirmation from the recipient node, indicating the successful receipt and 
processing of a previously transmitted Destination Advertisement Object (DAO) message.    
The objective function (OF) in RPL governs how nodes construct the DODAG, select 
optimal paths, and calculate their ranks [10-12]. It evaluates both link and node metrics to 
determine the most suitable parent for routing. RPL defines two standard objective 
functions:Objective Function Zero (OF0) [13]: Selects routes based on hop count, favoring 
paths with the fewest hops to the root. 
•​ Minimum Rank with Hysteresis Objective Function (MRHOF) [14]: Chooses paths based 
on the Expected Transmission Count (ETX), which measures link reliability.Additional 
metrics, such as energy consumption and Received Signal Strength Indicator (RSSI), may 
also be considered [15]. 
2.2 Machine learning ML 
Machine learning (ML) is a subset of artificial intelligence that enables systems to learn from 
data and make informed decisions without needing programming. In wireless sensor 
networks (WSNs), ML has been extensively employed to enhance Quality of Service (QoS) 
and security, including applications such as traffic classification, anomaly detection, intrusion 
detection, and network optimization [16]. 
2.2.1Random Forest 
Random forest Classifier is a collection of decision trees, where each tree is trained on a 
different subset of the data. When it comes to making a prediction, each individual tree 
"votes" for a class label, and the class with the most votes becomes the final prediction of the 
random forest. 
•​ Ensemble learning means using multiple models (in this case, decision trees) to improve 
the performance over a single model. 
•​ Bootstrap aggregating (Bagging) is the technique that Random Forest uses to create each 
tree by training on random samples of the data. 
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•​ Random feature selection is used when building each tree, ensuring that trees are diverse 
and independent of one another. 
 
 
2.2.2 Support Vector machine (SVM) 
A Support Vector Machine (SVM) is a supervised machine learning algorithm commonly 
used for classification tasks, although it can also be applied to regression problems. The main 
idea of SVM is to find a hyperplane that best separates the data into distinct classes. It is 
particularly effective in high-dimensional spaces and is known for its ability to handle 
complex, non-linear decision boundaries using a technique called the kernel trick. 

 
Fig 1. The SVM Technique. 
 
3.​ Contributions of this paper 
 Energy limitation is one of the most important challenges facing WSNs and is a major concern as the 
network expands. Therefore, we are developing key energy efficiency measures to manage energy 
consumption within the network effectively. This research contributes to addressing this issue. 

●​ Development of a low-power routing protocol (RPL) based on machine learning in 
WSNs that support the IoT aimed to reduce energy consumption. 

●​ The proposed model classifies the available paths from the source node to the target 
based on the total energy consumption, ensuring that messages are delivered with the 
lowest possible energy usage. 

●​ We used two models: one that used the RF algorithm and the other that used the SVM 
algorithm. 

4.​ Simulation Parameter  
Parameters are critical variables that influence the behavior and overall performance of 
the network.  The appropriate selection and precise configuration of these parameters are 
vital for enhancing the network’s operational efficiency and achieving optimal system 
performance.     Various measurements are collected, including the power consumption, 
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and  end-to-end delay (E2E) . The RPL protocol was evaluated through simulation under 
two distinct scenarios :uniform, and random distribution.  

Table 1. Simulation Parameters  
Parameter Value 

Number of Nodes in the field 26, 50 
Number of Sink 1,2 

Maximum number of rounds 300 
WSN deployment Area 100 

Radio Range 120 
Maximum number of rounds (r max) max Rounds 

Data packet size (Packet Size) 400 
Hello packet size (Hello Packet Size) 100 

Number of Packets to be sent in steady-state phase 
(Num Packet) 

100 

Initial Energy in Joules (E₀) 0.5 
Transmission and receiving energy consumption 

(Eₓ, Eᵣ) 
Ex=50×10−10Eₓ = 50 \times 10^{-10}, 
Er=50×10−10Eᵣ = 50 \times 10^{-10} 

Transmit Amplifier energy consumption (SRAEC) 10−1110^{-11} Joules 
Long range Amplifier energy consumption 

(LRAEC) 
13×10−1813 \times 10^{-18} Joules 

Threshold distance (d�h) 877.0580 (unitless) 
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5. Result and discussion 

In this section, we present the results of implementing the proposed model that aimed to   
improve energy consumption in WSNs. 

5.1 Average power consumption 

In  two sink, The OF0 approach consistently shows the highest power consumption across all 
node densities, both RF and SVM significantly outperform OF0 in terms of energy consumption, 
with SVM achieving the best energy profile. The  using  of  two sink show more power efficient 
by almost 50% than using of one sink in all algorithms, and  across all node densities the power 
consumption in area 200 is better than 400 in two sink  across all node densities. 

In  one sink  the integration of the Random Forest (RF) algorithm with the RPL protocol 
consistently achieved the lowest energy consumption across all tested scenarios, regardless of 
differences in network topology and configuration. The reason is because the RF algorithm that 
the following advantages: Simple implementation, effective use of data, it work well when 
there’s noise in the data, and work quickly in training. 

 

Fig 2. Average power consumption scenario 1 Area 200m 2sink. 
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Fig 3. Average power consumption scenario 1 Area 400m 2sink . 
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Fig 4. Average power consumption scenario 1 Area 400m 1sink. 

 
Fig 5. Average power consumption scenario 1 Area 200m 1sink. 
 

 
Fig 6. Average power consumption scenario 2 Area 400m 1sink 
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Fig 7. Average power consumption scenario 2 Area 200m 1sink 

 
Fig 8. Average power consumption scenario 2 Area 400 m 2sinks 
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Fig 9. Average power consumption scenario 2 Area 200m 2sink.  
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5.2 The percentage E2E delay 

Figures 10-13 show the percentage delay in data transmission from the source to the interface 
across the various simulation scenarios using one sink. The results indicate that delay increases 
proportionally with the number of nodes in the network in area 200. For both the RF and SVM 
algorithms, the observed delay percentages are relatively close, ranging between 10% and 50%, 
depending on the number of nodes deployed.E2E delay decrease when the number of node 
increase. Figures 14-17 show the percentage delay in data transmission from the source to the 
interface across the various simulation scenarios using two sink. While OF0 gets better with 
more nodes in area 400m, it still does not beat RF and SVM. In all cases and in every part of the 
network, the SVM method shows the best way to cut delays and grow, followed by RF. The RF 
method also usually does better than the old OF0 rule. In all cases and in every part of the 
network,the E2E delay in two sink is better than one sink by almost 20%. 

 
Fig 10.Percentage E2E Delay scenario 1 area 200 m 1 sink 
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Fig 11. Percentage E2E Delay scenario 1 area 400 m 1 sink 
 

 
  Fig 12.Percentage E2E Delay scenario 2 area 200 m 1 sink 
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Figure 13. Percentage E2E Delay scenario 2 area 400 m 1 sink. 

 
Fig 14. Percentage E2E Delay scenario 1 area 200 m 2sink 
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Fig 15. Percentage E2E Delay scenario 1 area 400 m 2sink. 
 

 
Fig 16. Percentage E2E Delay scenario 2 area 400 m 2sink 

 
Fig 17.Percentage E2E Delay scenario 2 area 200 m 2sink. 
7. Conclusions 
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             One of the most significant challenges facing the WSN is energy consumption, which 
plays an important and effective role in the network’s performance and extending its life. 
Therefore, it is important to choose the appropriate nodes, protocols and technologies to ensure 
the lowest possible power consumption. The low-power lossy routing protocol (RPL) has many 
uses in WSNs due to its ability to reduce energy consumption and improve routine quality This 
paper presents a model that combines machine learning techniques and the RPL protocol to 
improve the performance of standard RPL by identifying the best energy-efficient path for data 
transmission from the source node to the interface .while maximising data delivery rate and 
minimising latency. Simulation results demonstrate that The RPL-RF model reduced average 
power consumption by 22–38% and achieved better performance than the RPL-SVM and 
RPL-OF0 baselines for single-sink scenarios . With the implementation of a two-sink topology , 
average power consumption was further reduced by 38–43% across all routing protocols and 
network scenarios, demonstrating the significant benefit of a multi-sink framework for energy 
efficiency. 
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