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వియుకత  
 

రియల్-టైమ్ ఆబె్జక్టర డిటెక్షన్లో ఇటీవలి పురోగతులు ఎింబ్జడెడ్ అపి్లకేష్న్లకు అన్ువైన్ ఎిండ్-టు-
ఎిండ్, సింగిల్-షాట్ ఇన్ఫెరెన్్ పైప్లైన్లన్ు పా్రరింభించడిం ద్వీరా కింప్యయటర్ విజన్ రింగాన్నా మారాాయి. 
అల్ట్ర ీలిటిక్ట్ YOLOv8 మోడల్ YOLO కుటుింబింలో తాజా పున్రుక్నతన్న సూచిసుు ింది, యింకర్-ఫీ్ర 
డిటెక్షన్ హెడ్, CSP-ఆధారిత బాయక్టబోన్లు మరియు అధున్నతన్ శిక్షణ ఆప్లరమైజేష్న్లన్ు పరిచయిం 
చేసుు ింది. ఈ పన్న NVIDIA జెట్న్ ఓరిన్ న్ననోపై YOLOv8 యొకక ప్యరిత విసురణ పైప్లైన్న్ు 

అిందిసుు ింది, ఇది ఆింప్లయర్ GPUతో కూడిన్ 40 TOPS ఎడె్ AI పరికరిం, ల్ట్జిటెక్ట USB కెమెరాతో ఇన్
పుట్ సోర్్గా కలిప్ల ఉింటుింది. అమలు అధిక-తూూ పుట్, తకుకవ-లేటెన్స్ ఇన్ఫెరెన్్ కోసిం PyTorch శిక్షణ, 
ONNX ఎగుమతి మరియు TensorRT ఆప్లరమైజేష్న్న్ు అన్ుసింధాన్నసుు ింది. పాయోగాతాక ఫలితాలు 
VGA రిజలూయష్న్ కోసిం సెకన్ుకు సుమారు 30 ఫ్రీమ్ల వదద  వయకుత లు మరియు వసుు వులన్ు న్మాదగిన్ 
గురితింపున్ు పాదరిిసాు యి, ఇది పరిమిత పవర్ ఎన్ీలప్లలో ఎింబ్జడెడ్ రియల్-టైమ్ విజన్ యొకక 
సాధాయసాధాయలన్ు హైలైట్ చేసుు ింది. కాీింటైజేష్న్, పవర్-పెరాెరెాన్్ ట్రేడ్-ఆఫ్లు మరియు రోబోటిక్ట్ 
మరియు సాార్ర సర్వైలెన్్ కోసిం అపి్లకేష్న్ చికుకలతో సహా ససరమ్ యొకక విసురణ పరిగణన్లు 
చరిాించబడా్డయి . 
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1. పరిచయిం 

 
ఆబె్జక్టర డిసకవర్వ అనేది కింప్యయటర్ దృష్టరక్న పున్నది, ఇది సీతింతూ న్నవిగేష్న్ మరియు న్నఘా 

న్ుిండి ఉత్తుజిత వాసువికత వరకు పన్ులన్ు అన్ుమతిసుు ింది. R-CNN, ఫాస్ర R-CNN మరియు ఫాసరర్ 
వింటి సాింపాద్వయ బహుళ-దశ సెన్న్రుి  అతాయధున్నక డెలికేస్ట్న్న సాధిించాయి కాన్స అధిక కింప్యయట్రష్న్ల్ 
అవుట్ఫో్లతో బాధపడా్డయి, ఎింబ్జడెడ్ బయస్పై రియల్-టైమ్ డిపి్రయ్మెింట్ కోసిం వాటి మైలేజీన్న 
పరిమితిం చేశాయి. విరుదధింగా, YOLO (యు ఓని్స లుక్ట ఓరి్వ లుక్ట) కుటుింబిం సింగిల్-స్టరజ్ డిసకవర్వన్న 
ఆవిష్కరిించిింది, పన్నన్న తిరోగమన్ సమసయగా రూపిందిించిింది మరియు తద్వీరా ముగిింపు వేగింలో 
ఆరార్్-ఆఫ్-మాగిాటూయడ్ పురోగతిన్న సాధిించిింది. 2023లో అల్ట్ర ీలిటిక్ట్ పావేశపెటిరన్ YOLOv8, 
డిసకవర్వ డెలికేస్ట్ మరియు కింప్యయట్రష్న్ల్ ఎఫెక్నరవ్న్ఫస్ మధయ అన్ుకూలమైన్ సమతులయతన్ు 
అిందిించడ్డన్నక్న యింకర్-ఫీ్ర డిసకవర్వ హెడ్లు, పాభావవింతమైన్ CSP  చైన్లు మరియు స్ట్రీమ్లైనా్ టైీన్నింగ్ 
ఛాన్ఫల్లన్ు అన్ుసింధాన్నసుు ింది. ఇింతలో, NVIDIA జెట్న్ ఓరిన్ న్ననో ఎడె్ AI  కోసిం సరసమైన్ కాన్స 
ముఖ్యమైన్ పి్రట్ఫామ్న్ు అిందిసుు ింది, ద్వన్న 1024 CUDA కోరుి , 32 టెన్్ర్ కోరుి  మరియు LPDDR5 
మెమర్వ సబ్ససరమ్న్ు ఉపయోగిించి 7 - 15 W పవర్ వదద  40 కవరి AI  పన్నతీరున్ు అిందిసుు ింది. ఈ 
పరికరింలో YOLOv8 న్న న్నటడిం వలన్ కాింప్రక్టర ఎింబ్జడెడ్ టాక్నల్తో అతాయధున్నక డిసకవర్వ అలోోరిథింల 
వివాహింలో ఆచరణాతాక జాాన్నన్నా అిందిసుు ింది . 

 
పరిశోధన్ లక్ష్యయలు మరియు పదదతి 
USB  కెమెరా ఇన్ పుట్ ఉపయోగిించి రియల్-టైమ్ విజన్ పన్ుల కోసిం NVIDIA జెట్న్ ఓరిన్ న్ననోపై 
YOLOv8 ఆబె్జక్టర డిటెక్షన్ ఫ్రీమ్ వర్క న్ు అమలు చేయడిం యొకక పాభావాన్నా అించన్న వేయడిం ఈ 
అధయయన్ిం లక్షయిం. పరిశోధన్ లక్ష్యయలు: 

1. రియల్-టైమ్ డిటెక్షన్ కోసిం ఎింబ్జడెడ్ GPU  పి్రట్ ఫారమ్ (జెట్న్ ఓరిన్ న్ననో)పై YOLOv8 న్న 
అమలు చేయడిం యొకక సాధాయసాధాయలన్ు పరిశోధిించడ్డన్నక్న. 

2. ONNX మారిొడి మరియు TensorRT తీరణిం (FP 16 మరియు INT 8) ఉపయోగిించి అించు 
విసురణ కోసిం YOL Ov8  మోడల్ న్ు ఆప్లరమైజ్ చేయడ్డన్నక్న. 

3. లైవ్ వీడియో పరిసితులిో ఫీ్రమ్్ పర్ సెకిండ్ ( FPS ), జాపయిం మరియు GPU  విన్నయోగిం పరింగా 
ససరమ్ పన్నతీరున్ు కొలవడ్డన్నక్న. 
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4. వివిధ రకాల లైటిింగ్ మరియు దృశయ సింక్నషి్రతలలో బహుళ వసుు వుల (ఉద్వహరణకు, వయకుత లు, 
సెల్ ఫ్లన్ుి ) గురితింపు ఖ్చిాతతీిం మరియు దృఢతాీన్నా అించన్న వేయడ్డన్నక్న. 

5. ఎడె్ AI  విసురణలలో మోడల్ పరిమాణిం, ఖ్చిాతతీిం మరియు వేగిం మధయ ట్రేడ్-ఆఫ్ ల గురిించి 
అింతరదృష్ుర లన్ు అిందిించడ్డన్నక్న. 
 

2. సాహితయ సరేీ 
 

ఆబె్జక్టర డిటెక్షన్ రెిండు పరిప్యరక అక్ష్యలతో అభవృదిధ  చిందిింది: పాతి-చితూ ఖ్చిాతతాీన్నా 
మెరుగుపరచడిం మరియు న్నరబింధ హారా్ వేర్ పై న్నజ-సమయ ఆపరేష్న్ న్ు పా్రరింభించడ్డన్నక్న అన్ుమితి 
జాప్రయన్నా తగోిించడిం. పా్రరింభ అధిక-ఖ్చిాతతీ విధాన్నలు రెిండు-దశల న్మూన్నన్ు అన్ుసరిించాయి, 
ఇకకడ పా్రింత పాతిప్రదన్లు ఉతొతిు చేయబడతాయి మరియు వరో్వకరిించబడతాయి. R-CNN  మరియు 
ద్వన్న ఉతొన్నాలు (ఫాస్ర R-CNN , ఫాసరర్ R-CNN ) ఈ వర్క ఫో్లన్ు అధికారికీకరిించాయి మరియు సెలెక్నరవ్ 
సెర్ా / ర్వజియన్ పాతిప్రదన్ న్ఫట్ వర్క లన్ు లోతైన్ వరో్వకరణద్వరులతో కలపడిం ద్వీరా బలమైన్ గురితింపు 
పన్నతీరున్ు సాధిించాయి, కాన్స అధిక గణన్ ఓవర్ హెడ్ మరియు రియల్-టైమ్ అన్ీయతన్ు పరిమితిం 
చేస్ట జాపయిం యొకక ఖ్రుాతో [14]. పెదద  లేబుల్ చేయబడిన్ కారోొరాపై (ఉద్వ., ఇమేజ్ న్ఫట్) ప్రాటైీన్ 
చేయబడిన్ డీప్ కన్ీలూయష్న్ల్ బాయక్ట బోన్ ల విజయిం తదుపరి డిటెకరర్ లకు పా్రతిన్నధయ పున్నదిన్న 
అిందిించిింది [10, 8]. 

జాపయ పరిమితులన్ు తీరాడ్డన్నక్న, సింగిల్-స్టరజ్ డిటెకరరుి  డిటెక్షన్ న్ు దటరమైన్, పర్-లొకేష్న్ ప్లాడిక్షన్ 
సమసయగా ర్వఫీ్రమ్ చేశాయి. సింగిల్ షాట్ డిటెకరర్ (SSD ) బహుళ-స్టకల్ ఫ్రచర్ మాయప్ లు మరియు డిఫాల్ర 
బాక్ట్ లన్ు ఒకే ఫారీరా్ ప్రస్ లో ఆబె్జక్టర కిాస్ లు మరియు లొకేష్న్ లన్ు అించన్న వేయడ్డన్నక్న పావేశపెటిరింది, 
ఇది విన్నయోగద్వరు GPU లు మరియు ఎింబ్జడెడ్ బోరుా లపై ఆచరణాతాక రియల్-టైమ్ డిటెక్షన్ న్ు 
అన్ుమతిసుు ింది [9]. అదే సమయింలో, YOLO  కుటుింబిం గిిడ్ కణాల న్ుిండి బిండిింగ్ బాక్ట్ లు 
మరియు కిాస్ సింభావయతలన్ు నేరుగా అించన్న వేస్ట ఎిండ్-టు-ఎిండ్ రిగి్రష్న్ ఫారుాలేష్న్ న్ు పా్రచురయిం 
పిందిింది, పోటీ ఖ్చిాతతాీన్నా కొన్సాగిసూు  ఏకీకృత సింగిల్-న్ఫట్ వర్క విధాన్ిం అధిక న్నరోమాింశన్ు 
సాధిించగలదన్న న్నరూప్లించిింది [1]. తదుపరి YOLO  పున్రిీమరిలు న్నరూప్లతమైన్ డీప్-లెరిాింగ్ 
పదధతులన్ు కరమింగా చేరాాయి—యింకర్ బాక్ట్ లు మరియు బాయచ్ న్నరాలైజేష్న్ (YOLOv2 ), లోతైన్ 
అవశేష్ వెన్ఫాముకలు మరియు మల్టర-స్టకల్ ప్లాడిక్షన్ (YOLOv3 ), మరియు కార స్-స్టరజ్ ప్రక్షిక కన్ఫక్షన్ లు పిస్ 
బలమైన్ ఆగ్రాింట్రష్న్ మరియు ల్ట్స్ ఫింక్షన్ లు (YOLOv4 )—వేగిం/ఖ్చిాతతీ సరిహదుద న్ు న్నరింతరిం 
మెరుగుపరచడ్డన్నక్న [2–4]. 

https://jcse.cloud/


The Journal of Computational Science and Engineering (TJCSE) 

ISSN 2583-9055 (Media Online) 

Vol 3, No 11, Nov 2025  

    

 

 
 

 
ISSN:  2583-9055     https://jcse.cloud/   

 
 

 

YOL O  వింశిం వెలుపల ఉన్ా ఆరికటెకారల్ ఆవిష్కరణలు కూడ్డ సామరియ సరిహదుద న్ు అభవృదిధ  
చేశాయి. అవశేష్ కన్ఫక్షన్ుి  (ResNet) పావణతలు అదృశయిం కాకుిండ్డ చాల్ట్ లోతైన్ వెన్ఫాముకలన్ు 
ఎనేబుల్ చేశాయి, డిటెక్షన్ హెడ్ ల కోసిం ఫ్రచర్ వెలిక్నతీతన్ు మెరుగుపరిచాయి [8]. మెరుగైన్ FLOP ల-
న్ుిండి-ఖ్చిాతతీ ట్రేడ్-ఆఫ్ ల కోసిం రిజలూయష్న్, లోతు మరియు వెడలుొన్ు సింయుకతింగా స్టకల్ 
చేయడ్డన్నక్న EfficientDet మోడల్ స్టకలిింగ్ మరియు వెయిటెడ్ బై-డైరెక్షన్ల్ ఫ్రచర్ ప్లరమిడ్ (Bi FPN )తో 
కాింపిండ్ స్టకలిింగ్ న్నయమాన్నా పావేశపెటిరింది [11]. YOLOv7 మరియు YOLOv8 వింటి ఇటీవలి ఆబె్జక్టర 
డిటెకరరుి  సమరివింతమైన్ ఫ్రచర్ అగిిగేష్న్ మాడూయల్ లన్ు (E -ELAN, CSP   వేరియింట్ లు), యింకర్-ఫ్ర ీ
హెడ్ లన్ు నొక్నక చబుతున్నాయి మరియు అన్ుమితి ఓవర్ హెడ్ న్ు తగోిించేటపుొడు చిన్ా-వసుు వు గురితింపు 
మరియు కన్ీరెెన్్ న్ు మెరుగుపరిచే “బాయగ్-ఆఫ్-టిేక్ట్” శిక్షణన్ు అిందిసుు న్నాయి [5, 6]. YOLOv8  
యొకక యింకర్-ఫ్రీ హెడ్ బాక్ట్ రిగి్రష్న్ న్ు సులభతరిం చేసుు ింది మరియు తరచుగా యింకర్-ఆధారిత 
వేరియింట్ లకు సింబింధిించి అన్ుమితి ఖ్రుా మరియు హైపర్ ప్రరామీటర్ సెన్న్టివిటీన్న తగోిసుు ింది [6]. 

ముడి మోడల్ డిజైన్ కు మిించి, ఆచరణాతాక అించు విసురణ మోడల్ స్టకలిింగ్ మరియు హారా్ వేర్-
అవేర్ ఆప్లరమైజేష్న్ లపై ఆధారపడి ఉింటుింది. త్తలికైన్ న్నరాాణాలు (ఉద్వ. మొబైల్ న్ఫట్ వేరియింట్ లు) 
మరియు స్టకలా్ YOL O  “న్ననో/సాాల్” వేరియింట్ లు ప్రరామితి మరియు FLOPల తగోిింపులన్ు 
అిందిసాు యి, ఇవి ఎింబ్జడెడ్ SoC లపై రియల్-టైమ్ అన్ుమితిన్న సాధయిం చేసాు యి [16]. సాఫ్ట వేర్ వైపు, 
NVIDIA యొకక CUDA  మరియు TensorRT వింటి వికేరత సార క్ట లు శిక్షణ పిందిన్ న్ఫట్ వర్క లన్ు 
ఆప్లరమైజ్ చేసన్ రన్ టైమ్ ఇింజిన్ లుగా మారుసాు యి, ఇవి లేయర్ ఫ్యయజన్, కెరాల్ ఆటోటూయన్నింగ్ 
మరియు మిక్ట్ డ్-పెాసష్న్ ఎగెికూయష్న్ (FP 16/INT 8) న్నరీహిసాు యి, ఇవి అమాయక ఫ్రీమ్ వర్క 
అన్ుమితిపై బహుళ-ఫ్లలా్ స్ట్ొడ్ అప్ లన్ు అిందిసాు యి [12, 13]. కాీింటైజేష్న్ (పోస్ర-టైీన్నింగ్ మరియు 
కాీింటైజేష్న్-అవేర్ శిక్షణ) ఒక కీలకమైన్ లివర్: INT8  అమలు పాధాన్ తూూ పుట్ ల్ట్భాలన్ు ఇసుు ింది కాన్స 
ఖ్చిాతతీ క్షీణతన్ు పరిమితిం చేయడ్డన్నక్న జాగితుగా కరమాింకన్ిం లేద్వ తిరిగి శిక్షణ అవసరిం. 

ఎింబ్జడెడ్ NVIDIA జెట్న్ పి్రట్ ఫారమ్ లు ఆన్-డివైస్ విజన్ కోసిం వాసువ పర్వక్ష్య కేిందరింగా 
మారాయి, అధయయన్నలు జెట్న్ న్ననో, జేవియర్ మరియు AGX  ఓరిన్ బోరుా లపై టెన్న్ర్ఆర్ టి 
ఆప్లరమైజేష్న్ మరియు మోడల్ ప్యూ న్నింగ్/కాీింటైజేష్న్ తరాీత రియల్ టైమ్ లో YOL O  వేరియింట్ లన్ు 
అమలు చేసుు న్ాటుి  చూప్లసుు న్నాయి [7]. ఈ రచన్లు (1) మోడల్ ఎింప్లక (వేరియింట్ పరిమాణిం) 
కఠిన్మైన్ రియల్-టైమ్ పరిమితులన్ు తీరాగలద్వ అన్న న్నయింతిూసుు ిందన్న, (2) టెన్్ర్ ఆర్ టి FP16 
అమలు తరచుగా అన్ుకూలమైన్ ఖ్చిాతతీిం/జాపయ బిందువుకు సరిపోతుిందన్న మరియు (3) 
కరమాింకన్ిం లేద్వ పరిమాణీకరణ-అవేర్ శిక్షణన్ు ఉపయోగిించిన్పుొడు INT8 న్నరాడింబరమైన్ ఖ్చిాతతీ 
ఖ్రుాతో తూూ పుట్ న్ు మరిింత పెించుతుిందన్న సిరింగా న్నవేదిసుు న్నాయి. 

https://jcse.cloud/


The Journal of Computational Science and Engineering (TJCSE) 

ISSN 2583-9055 (Media Online) 

Vol 3, No 11, Nov 2025  

    

 

 
 

 
ISSN:  2583-9055     https://jcse.cloud/   

 
 

 

ఈ పురోగతులు ఉన్ాపొటికీ, అతాయధున్నక డిటెకరర్ లన్ు శక్నత-న్నరబింధిత అించు పరికరాలకు 
అన్ువదిించేటపుొడు అింతరాలు ఉింటాయి. మొదటిది, ఆధున్నక యింకర్-రహిత హెడ్ లు మరియు 
హారా్ వేర్ యక్న్లరేటర్ ల మధయ పరసొర చరయ తకుకవగా అనేీష్టించబడిింది: యింకర్-రహిత డిజైన్ లు 
అలో్ట్రిథమిక్ట సింక్నషి్రతన్ు తగోిసాు యి కాన్స ఆప్లరమైజ్ చేయబడిన్ కెరాల్ లకు సింబింధిించి వాటి 
మెమర్వ/యకె్స్ న్మూన్నలు న్నజమైన్ న్నరోమాింశన్ు పాభావితిం చేసాు యి. రెిండవది, కాీింటైజేష్న్ 
దృఢతీిం - ముఖ్యింగా వైవిధయమైన్ లైటిింగ్ మరియు మూసవేత క్నింద చిన్ా-వసుు వు గురితింపు కోసిం - 
పి్రట్ ఫారమ్ లు మరియు పన్నభారాలలో మరిింత అన్ుభావిక మూల్ట్యింకన్ిం అవసరిం. మూడవది, 
జెట్న్ టైర్ లలో (ఓరిన్ న్ననో, జేవియర్ NX , AGX  ఓరిన్) గురితింపు ఖ్చిాతతీిం, జాపయిం, శక్నత విన్నయోగిం 
మరియు ఉష్ణ పావరతన్న్ు సింయుకతింగా న్నవేదిించే సమగి మూల్ట్యింకన్నలు పరిమితిం. 

ఈ అధయయన్ిం జెట్న్ ఓరిన్ న్ననోలో తాజా YOLOv8 ఆరికటెకార్ న్ు అమలు చేయడిం ద్వీరా, 
మోడల్ స్టకలిింగ్, ONNX  ఎగుమతి మరియు TensorRT ఆప్లరమైజేష్న్ (FP16 /INT8  కరమాింకన్ిం) లన్ు 
కలిప్ల, రియల్ కెమెరా ఫ్రడ్ ల క్నింద తూూ పుట్ (FPS  ), పర్-ఫ్రీమ్ లేటెన్స్, GPU  విన్నయోగిం మరియు 
డిటెక్షన్ రోబస్ర న్ఫస్ మధయ ఆచరణాతాక ట్రేడ్-ఆఫ్ లన్ు అించన్న వేయడిం ద్వీరా ఆ అింతరాలన్ు 
పరిష్కరిసుు ింది. [1–14] లో న్మోదు చేయబడిన్ పురోగతిలో మా పాయోగాతాక ఫలితాలన్ు గురితించడిం 
ద్వీరా, మేము రియల్-వరలా్ ఎడె్- AI   అపి్లకేష్న్ ల కోసిం ఆధున్నక సింగిల్-స్టరజ్ డిటెకరర్ ల సాధయత యొకక 
సమగి అించన్నన్ు అిందిసాు ము. 
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3. పదదతి 
 

 
చితూిం 1. రియల్-టైమ్ YOLOv8 ఆబె్జక్టర డిటెక్షన్ కోసిం పతాిప్రదిత పదదతి 

 
జెట్న్ ఓరిన్ న్ననోపై YOLOv8  న్న అమలు చేయడ్డన్నక్న పాతిప్రదిత పదదతిలో Fig . 1 లో చూప్లన్ 
విధింగా న్నరాాణాతాక పైప్ లైన్ ఉింటుింది. 

1. మోడల్ ఇన్నష్టయలైజేష్న్ (YOLOv8): ముిందసుు  శిక్షణ పిందిన్ YOLOv8  మోడల్ ద్వన్న 
యింకర్-ఫ్రీ డిటెక్షన్ హెడ్ మరియు గణన్ సామరియిం కారణింగా ఎింప్లక చేయబడిింది, ఇది ఎడె్ 
AI  క్న అన్ుకూలింగా ఉింటుింది. 

2. ఫ్రచర్ ఎక్ట్ టేాక్షన్ (CSP  బాయక్ట బోన్): ఇన్ పుట్ ఫ్రీమ్ లు కార స్-స్టరజ్ ప్రరిియల్ (CSP  ) బాయక్ట బోన్ 
ద్వీరా పింపబడతాయి, ఇది గిేడియింట్ పావాహాన్నా పెించుతుింది మరియు బహుళ-సిాయి 
లక్షణాలన్ు సింగిహిించేటపుొడు మెమర్వ విన్నయోగాన్నా తగోిసుు ింది. 

3. ఫ్రచర్ అగిగిేష్న్ (PANet   న్ఫక్ట): ప్రత్ అగిిగేష్న్ న్ఫట్ వర్క (PANet  ) వివిధ పరిమాణాల 
వసుు వులలో గురితింపున్ు మెరుగుపరచడ్డన్నక్న లోతులేన్న మరియు లోతైన్ ఫ్రచర్ మాయప్ లన్ు 
అన్ుసింధాన్నసుు ింది. 

4. డిటెక్షన్ హెడ్ & న్నన్-మాగెిమమ్ సపెషా్న్: డిటెక్షన్ హెడ్ బిండిింగ్ బాక్ట్ లు, కిాస్ సోకర్ లు 
మరియు కాన్నెడెన్్ విలువలన్ు అించన్న వేసుు ింది. ఫిలరర్ రిడెిండెింట్ డిటెక్షన్ లకు న్నన్-
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మాగెిమమ్ సపాెష్న్ (NMS ) వరితించబడుతుింది, పాతి వసుు వుకు ఒకే బిండిింగ్ బాక్ట్ ఉిండేల్ట్ 
చేసుు ింది. 

5. మోడల్ ఆప్లరమైజేష్న్ (ONNX  మరియు TensorRT): రియల్-టైమ్ డిపి్రయ్ మెింట్ కోసిం, 
PyTorch-శిక్షణ పిందిన్ YOLOv8 మోడల్ ONNX  ఫారాాట్ కు ఎగుమతి చేయబడిింది మరియు 
TensorRTన్న ఉపయోగిించి ఆప్లరమైజ్ చేయబడిింది. ఖ్చిాతతీ న్షార న్నా తగోిించేటపుొడు 
అన్ుమితిన్న వేగవింతిం చేయడ్డన్నక్న FP16  మరియు INT8  పెాసష్న్ మోడ్ లు పర్వక్షిించబడా్డయి. 

6. తుది విసురణ: ఆప్లరమైజ్ చేయబడిన్ TensorRT మోడల్ జెట్న్ ఓరిన్ న్ననో GPU పై అమలు 
చేసుు ింది, VGA  రిజలూయష్న్ (640×480, 30 FPS ) వదద  ల్ట్జిటెక్ట USB కెమెరా న్ుిండి ఫ్రీమ్ లన్ు 
పా్రసెస్ చేసుు ింది మరియు రియల్-టైమ్ లో లైవ్ వీడియోలో డిటెక్షన్ లన్ు ఓవర్ లే చేసుు ింది . 

 
 
4. పయాోగాతాక సెటప్ మరియు అమలు  
 

 
చితూిం 2. వసుు వు గురితింపు కోసిం YOLOv8  అన్ుమితి పైప్ లైన్ 

 
 

1. ఇన్పుట్ ఇమేజ్/వీడియో సముప్రరెన్ : ఇన్పుట్ సోర్్ న్ుిండి డేటాన్ు ల్ట్యిండిింగ్ చేయడిం 
ద్వీరా ససరమ్ పా్రరింభమవుతుింది. మా విష్యింలో, ఇది జెట్న్ ఓరిన్ న్ననోకు కన్ఫక్టర చేయబడిన్ 
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ల్ట్జిటెక్ట UDB కెమెరా, ఇది న్నరింతరిం రియల్-టైమ్ వీడియో ఫ్రీమ్లన్ు పాసారిం చేసుు ింది. ఈ 
ఛాన్ఫల్ స్టరష్న్ర్వ ఇమేజెస్ లేద్వ ముిందే రికారా్ చేయబడిన్ వీడియో ట్రప్ లైన్లకు కూడ్డ మదదతు 
ఇసుు ింది, కాన్స బ్జడ్డెడ్ ఎడె్ డిపి్రయ్మెింట్ కోసిం, లైవ్ వీడియో ట్రప్ అక్నీడక్టరలు ఎకుకవగా 
వరితసాు యి. 

2. ప్రపాా్రసెసింగ్ (పున్ఃపరిమాణిం, సజాతీయీకరణ): పాతి ఇన్కమిింగ్ ఫ్రీమ్ YOLOv8 యొకక ఇన్
పుట్ సబ్కాయస్ర పరిసితులకు సరిపోయేల్ట్ సిర ఇన్పుట్ పరిమాణాన్నక్న మారాబడుతుింది. 
ముగిింపు సమయింలో మిందిం మరియు సింఖ్యయ సిరతాీన్నా న్నరాధ రిించడ్డన్నక్న ప్లకె్ల్ విలువలు 
కరమబద్ధధకరిించబడతాయి. అవుట్టర్ాన్ు ఆద్వ చేయడ్డన్నక్న ప్రాపా్రసెసింగ్న్ు ఫెదర్లైట్గా 
ఉించుతారు, కాన్స CPU బాయకప్లన్ు న్నవారిించడ్డన్నక్న ఆన్-డివైస్ ఆప్లరమైజేష్న్లు (CUDA- 
యక్న్లరేటెడ్ ఓపెన్సవి) ఉపయోగిించబడతాయి. 

3. YOLO మోడల్ (క్నషి్రత న్ూయరల్ న్ఫట్వర్క ముగిింపు): ముిందుగా పా్రసెస్ చేయబడిన్ ఫ్రీమ్ జెట్న్ 
ఓరిన్ న్ననో GPU లో ఉించబడిన్ YOLOv8 న్ూయరల్ న్ఫట్వర్కలోక్న పింపబడుతుింది. ఈ మోడల్ 
కాింపి్లకేష్న్ లేయర్లన్ు (CSP  బాయక్టబోన్) ఉపయోగిించి కరమాన్ుగత లక్షణాలన్ు సింగిహిసుు ింది 
మరియు PANet న్ఫక్ట ద్వీరా బహుళ-సిాయి ఆవిష్కరణన్ు న్నరీహిసుు ింది. మున్ుపటి యింకర్-
గి్ిండెడ్ YOLO పాదరిన్ల మాదిరిగా కాకుిండ్డ, YOLOv8 యింకర్-ఫీ్ర డిసకవర్వ హెడ్న్ు 
ఉపయోగిసుు ింది, బిండిింగ్ బాక్ట్లన్ు నేరుగా ప్లకె్ల్ సిాన్ింలో పాోగ్నాసరకేట్ చేసుు ింది, ఇది శిక్షణన్ు 
సులభతరిం చేసుు ింది మరియు ముగిింపున్ు పెట్్ అప్ చేసుు ింది. మోడల్ బిండిింగ్ బాక్ట్ 
ఈకీల్్, ఆబె్జక్టరన్ఫస్ సోకర్లు మరియు కిాస్ ఛాన్ఫ్స్తో సహా ముడి పాోగ్నాసరకేష్న్లన్ు పన్న 
చేసుు ింది. 

4. అించన్నలు (బిండిింగ్ బాక్ట్లు, తరగతులు, విశాీసిం): ఈ దశలో, న్ఫట్వర్క గురితించిన్ వసుు వుల 
కోసిం బహుళ ల్ట్యప్లింగ్ బిండిింగ్ బాక్ట్లన్ు ఉతొతిు చేసుు ింది. పాతి బిండిింగ్ బాక్ట్ ద్ధన్న ద్వీరా 
పా్రతిన్నధయిం వహిసుు ింది 

 చితాూ న్నక్న సింబింధిించి (x, y, w, h) న్నరూపకాలు 
 ఆబె్జక్టరన్ఫస్ సోకర్ (బాక్ట్లో ఆబె్జక్టర ఉిందనే బాధయత) 

 తెలిసన్ అన్నా తరగతులలో తరగతి సింభావయత పింప్లణీ. 
ఈ ముడి అించన్నలు తరచుగా పున్రావృతాలన్ు కలిగి ఉింటాయి 

5. గరిష్ర అణచివేత (న్క్నల్టలన్ు తొలగిించు): అించన్నలన్ు అప్గిేడ్ చేయడ్డన్నక్న, గరిష్ర  అణచివేత 
(NMS) వరితించబడుతుింది: • థ్రెషోలా్ కింట్ర తకుకవ విశాీస సోకర్లు ఉన్ా బాక్ట్లు 
విసారిించబడతాయి. 
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 ఒకే వసుు వు కోసిం ల్ట్యప్లింగ్ బాకు్లలో, అతయింత విశాీసిం ఉన్ా పెటెర మాతూమే 
న్నలుపుకోబడుతుింది, మరికొన్నా అణచివేయబడతాయి. 

ఇది పాతి వసుు వున్ు ఒకే బిండిింగ్ బాక్ట్ ద్వీరా పా్రతిన్నధయిం వహిసుు ిందన్న న్నరాధ రిసుు ింది, 
చదవడ్డన్నక్న మరియు ఉపయోగిించడ్డన్నక్న వీలు కలిొసుు ింది. 

6. ఫైన్ల్ డిటెకెరడ్ ఆబె్జక్టర్  (మారకర్్ బాక్ట్లు): మిగిలిన్ బిండిింగ్ బాక్ట్లు ఇన్పుట్ ఫ్రీమ్పై 
అతివాయప్లు చేయబడా్డయి, పాతి ఒకకటి ద్వన్న పాోగ్నాసరకేటెడ్ కిాస్ మారకర్ మరియు కాన్నెడెన్్ 
సోకర్తో వాయఖ్యయన్నించబడా్డయి. ఈ వాయఖ్యయన్నించిన్ ఫ్రీమ్లు జెట్న్ ఓరిన్ న్ననోలో 30 fps వదద  
న్నజ సమయింలో పాదరిిించబడతాయి, వేగిం మరియు డెలిసటీ రెిండిింటిన్స ధృవీకరిసాు యి. 
 

 
 
5. ఫలితాల విశేిష్ణ 
 

 
చితూిం 3. బిండిింగ్ బాక్ట్లు మరియు లేబుల్లతో ఎింబ్జడెడ్ హారా్వేర్పై YOLOv8 అన్ుమితిన్న పదారిిించే 

వాయఖ్యయన్నించిన్ గురితింపు అవుట్పుట్. 
 

ms జాప్రయన్నా న్నరీహిించిింది , అయిత్త GPU విన్నయోగిం సిరమైన్ లోడ్ క్నింద ~85% వదద  
గమన్నించబడిింది. 

ఈ ఫలితాలు ఓరిన్ న్ననో, ద్వన్న న్నరాడింబరమైన్ పవర్ ఎన్ీలప్ (15W) ఉన్ాపొటికీ, న్నజ 
సమయింలో అధున్నతన్ సింగిల్-షాట్ డిటెక్షన్ ఆరికటెకార్లన్ు అమలు చేయగలదన్న న్నరాధ రిసుు ింది . 
పాతయక్ష వీడియో స్ట్రీమ్ న్ుిండి గుణాతాక ఫలితాలు చితూిం 3లో పాదరిిించబడా్డయి. వాయఖ్యయన్నించబడిన్ 
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ఫ్రీమ్ బహుళ వసుు వులన్ు గురితించడ్డన్నా పాదరిిసుు ింది, వీటిలో 0.48 న్ుిండి 0.93 వరకు విశాీస సిాయిలు 
ఉన్ా వయకుత లు మరియు 0.53 విశాీస సోకరు కలిగిన్ సెల్ ఫ్లన్ ఉన్నాయి. 

బిండిింగ్ బాక్ట్లు ఆబె్జక్టర బిండర్వలతో సిరింగా సమలేఖ్న్ిం చేయబడా్డయి, వివిధ భింగిమలు 
మరియు పాకాశిం పరిసితులలో డిటెక్షన్ పైప్లైన్ యొకక దృఢతాీన్నా ధృవీకరిసుు న్నాయి. ముఖ్యింగా, 
YOLOv8 యొకక యింకర్-ఫీ్ర డిటెక్షన్ హెడ్ చిిందరవిందరగా ఉన్ా వాతావరణింలో కూడ్డ పెదద  
వసుు వులు (వయకుత లు) మరియు చిన్ా వసుు వులు (సెల్ ఫ్లన్) రెిండిింటిన్స ఖ్చిాతమైన్ సిాన్నకీకరణకు 
దోహదపడిింది. 

పరిమాణాతాక పరిశీలన్లు గురితింపు ఖ్చిాతతీిం మరియు అన్ుమితి వేగిం మధయ ట్రేడ్-ఆఫ్లన్ు 
మరిింత నొక్నక చబుతున్నాయి. INT8 పరిమాణీకరణ టేయల్్ సగటు సగటు ఖ్చిాతతీిం ( mAP ) లో 
సీలొ తగోిింపుతో ~1.5× సింభావయ న్నరోమాింశ మెరుగుదలలన్ు సూచిించాయి. పరిమాణీకరణ-
అవగాహన్ శిక్షణతో, ఓరిన్ న్ననో ఆమోదయోగయమైన్ గురితింపు న్నణయతన్ు న్నలుపుకుింటూ మరిింత అధిక 
ఫ్రీమ్ రేటికు మదదతు ఇవీగలదన్న ఇది సూచిసుు ింది. 
మొతుింమీద, పాయోగాతాక విశేషి్ణ మూడు కీలక ఫలితాలన్ు హైలైట్ చేసుు ింది: 

1. న్నరోమాింశ మరియు జాపయిం: ససరమ్ అించు విసురణకు అన్ువైన్ న్నజ-సమయ పన్నతీరున్ు 
సాధిించిింది. 

2. డిటెక్షన్ రోబస్రన్ఫస్: పెదద  మరియు చిన్ా వసుు వులన్ు ఖ్చిాతింగా గురితించడిం YOLOv8 వాసువ 
పాపించ దృశాయలకు అన్ుగుణింగా ఉిండే సామరిాయన్నా పాదరిిసుు ింది. 

3. స్టకలబలిటీ: మోడల్ కింపెాష్న్ మరియు కాీింటైజేష్న్ వన్రు-పరిమిత ఎింబ్జడెడ్ హారా్వేర్పై 
విసురణన్ు మరిింత ఆప్లరమైజ్ చేయడ్డన్నక్న ఆచరణీయ మారోాలన్ు అిందిసాు యి. 

. 
ముగిింపు 
 

ఈ పన్న NVIDIA Jetson Orin Nano లో YOLOv8 ఆబె్జక్టర డిటెక్షన్ ఫ్రీమ్వర్క యొకక 
ఆచరణాతాక విసురణన్ు పాదరిిించిింది, రియల్-టైమ్ వీడియో ఇన్పుట్ కోసిం ల్ట్జిటెక్ట USB కెమెరాన్ు 
ఉపయోగిించుకుింది. ఈ ససరమ్ VGA రిజలూయష్న్తో సుమారు 30 FPS వదద  సిరమైన్ పన్నతీరున్ు 
సాధిించిింది, YOLOv8 వింటి అధున్నతన్ డీప్ లెరిాింగ్ మోడల్లన్ు కాింప్రక్టర, పవర్-కన్స్ట్రీనా్ ఎింబ్జడెడ్ 
హారా్వేర్పై సమరివింతింగా అమలు చేయవచాన్న ధృవీకరిసుు ింది. డిటెక్షన్ ఫలితాలు విభన్ా 
వాతావరణాలలో వయకుత లు మరియు వసుు వుల విశీసన్సయ గురితింపున్ు హైలైట్ చేశాయి, 22–25 ms 
పరిధిలో జాపయిం మరియు ~85% వదద GPU విన్నయోగిం న్నరీహిించబడా్డయి. ఈ పరిశోధన్లు తెలివైన్ 
న్నఘా, రోబోటిక్ట్ మరియు మాన్వ-కింప్యయటర్ పరసొర చరయతో సహా అించు AI అపి్లకేష్న్లకు 
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ఆచరణీయ వేదికగా Orin న్ననో యొకక అన్ుకూలతన్ు న్నరాధ రిసాు యి, ఇకకడ తకుకవ-జాపయిం అన్ుమితి 
మరియు శక్నత సామరియిం చాల్ట్ ముఖ్యమైన్వి. 

సమరిొించబడిన్ ఫలితాలు ఆశాజన్కింగా ఉన్ాపొటికీ, భవిష్యత్ పన్నక్న అనేక మారోాలు మిగిలి 
ఉన్నాయి. INT8 ఖ్చిాతతీింలో పన్నచేస్టటపుొడు దృఢతాీన్నా పెింపిందిించడ్డన్నక్న కాీింటైజేష్న్-అవేర్ 
శిక్షణన్ు ఉపయోగిించడిం ఒక ముఖ్యమైన్ పడిగిింపు, తద్వీరా గురితింపు ఖ్చిాతతాీన్నా రాజీ పడకుిండ్డ 
అన్ుమితి సమయన్నా మరిింత తగోిించడిం. మర్పక దిశ YOLOv8-సెగ్రాింట్రష్న్ మరియు పోజ్ ఎసరమేష్న్ 
మాడూయళి ఏకీకరణ, ఇది వయవసిన్ు సాధారణ బిండిింగ్-బాక్ట్ డిటెక్షన్ న్ుిండి గొపొ దృశయ అవగాహన్కు 
విసురిసుు ింది. MobileNet-SSD, YOLO-NAS మరియు EfficientDet వింటి పాతాయమాాయ త్తలికైన్ 
డిటెకరర్లకు వయతిరేకింగా బ్జించ్మారికింగ్ కూడ్డ ఓరిన్ న్ననో పి్రట్ఫామ్లో ఖ్చిాతతీిం, న్నరోమాింశ 
మరియు శక్నత సామరియిం మధ్య ట్రేడ్-ఆఫ్లపై విసుృత దృకొథాన్నా అిందిసుు ింది. 

అదన్ింగా, ఉన్ాత-సిాయి జెట్న్ పరికరాలకు వయతిరేకింగా కార స్-పి్రట్ఫారమ్ మూల్ట్యింకన్నలు 
(ఉద్వ., జెట్న్ జేవియర్ NX , AGX ఓరిన్) ఓరిన్ న్ననో యొకక పన్నతీరు కవరున్ు సిందరోోచితింగా 
గురితించడింలో సహాయపడతాయి, NVIDIA యొకక ఎింబ్జడెడ్ పరాయవరణ వయవసి అింతటా YOLOv8 
యొకక స్టకలబలిటీన్న వెలిడిసాు యి. చివరగా, రియల్-టైమ్ స్ట్న్ సింక్నషి్రత ఆధారింగా మోడల్ సింక్నషి్రత 
లేద్వ ఇన్పుట్ రిజలూయష్న్ డైన్మిక్టగా సరుద బాటు చేయబడిన్ అడ్డప్లరవ్ ఇన్ఫెరెన్్ సార ీటజీల విల్టన్ిం, 
ద్ధరఘకాలిక ఫ్రలా్ డిపి్రయ్మెింట్లలో ససరమ్ పన్నతీరు మరియు బాయటర్వ జీవితకాలిం రెిండిింటిన్స 
గణన్సయింగా విసురిించే సామరిాయన్నా కలిగి ఉింటుింది. సమిష్టరగా, ఈ భవిష్యత్ దిశలు ఆచరణాతాక అించు 
AI డిపి్రయ్మెింట్లలో ఎింబ్జడెడ్ ఆబె్జక్టర డిటెక్షన్ పైప్లైన్ల ప్రతూన్ు మరిింత ఏకీకృతిం చేసాు యి . 
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Abstract   
 

Recent advances in real-time object detection have transformed the field of computer 
vision by enabling end-to-end, single-shot inference pipelines suitable for embedded 
applications. The Ultralytics YOLOv8 model represents the latest iteration in the YOLO family, 
introducing an anchor-free detection head, CSP-based backbones, and advanced training 
optimizations. This work presents a complete deployment pipeline of YOLOv8 on the NVIDIA 
Jetson Orin Nano, a 40 TOPS edge AI device with an Ampere GPU, in conjunction with a 
Logitech USB camera as the input source. The implementation integrates PyTorch training, 
ONNX export, and TensorRT optimization for high-throughput, low-latency inference. 
Experimental results demonstrate reliable detection of persons and objects at approximately 30 
frames per second for VGA resolution, highlighting the feasibility of embedded real-time vision 
in constrained power envelopes. The system’s deployment considerations, including 
quantization, power-performance trade-offs, and application implications for robotics and smart 
surveillance, are discussed. 
 
Keywords:   
YOLOv8, object detection, Jetson Orin Nano, edge AI, TensorRT, real-time inference​  
 
 
 
1. Introduction  
 

Object Discovery is a foundation of computer vision, enabling tasks ranging from 
independent navigation and surveillance to stoked reality. Traditional multi-stage sensors similar 
as R- CNN, Fast R- CNN, and Faster R- CNN achieved state- of- the- art delicacy but suffered 
from high computational outflow, limiting their mileage for real- time deployment on embedded 
bias. In discrepancy, the YOLO (You Only Look formerly) family innovated single- stage 
discovery, framing the task as a retrogression problem and thereby achieving 
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orders-of-magnitude advancements in conclusion speed. YOLOv8, introduced by Ultralytics in 
2023, integrates anchor-free discovery heads, effective CSP chines, and streamlined training 
channels to offer a favorable balance between discovery delicacy and computational 
effectiveness. Meanwhile, the NVIDIA Jetson Orin Nano provides an affordable yet important 
platform for edge AI, using its 1024 CUDA cores, 32 Tensor Cores, and LPDDR5 memory 
subsystem to deliver 40 covers of AI performance at 7 – 15 W power. Planting YOLOv8 on this 
device offers practical sapience into the marriage of state- of- the- art discovery algorithms with 
compact embedded tackle. 
Research Objectives and Methodology 
This study aims to evaluate the effectiveness of deploying the YOLOv8 object detection 
framework on the NVIDIA Jetson Orin Nano for real-time vision tasks using a USB camera 
input. The research objectives are: 

1.​ To investigate the feasibility of running YOLOv8 on an embedded GPU platform (Jetson 
Orin Nano) for real-time detection. 

2.​ To optimize the YOLOv8 model for edge deployment using ONNX conversion and 
TensorRT acceleration (FP16 and INT8). 

3.​ To measure system performance in terms of frames per second (FPS), latency, and GPU 
utilization under live video conditions. 

4.​ To assess detection accuracy and robustness for multiple objects (e.g., persons, cell 
phones) under varying lighting and scene complexity. 

5.​ To provide insights into the trade-offs between model size, accuracy, and speed in edge 
AI deployments 
 

2. Literature Survey  
 

Object detection has evolved along two complementary axes: improving per-image 
accuracy and reducing inference latency to enable real-time operation on constrained hardware. 
Early high-accuracy approaches followed a two-stage paradigm where region proposals are 
generated and then classified. R-CNN and its derivatives (Fast R-CNN, Faster R-CNN) 
formalized this workflow and achieved strong detection performance by combining selective 
search / region proposal networks with deeper classifiers, but at the cost of high computational 
overhead and latency that limits real-time applicability [14]. The success of deep convolutional 
backbones pretrained on large labelled corpora (e.g., ImageNet) provided the representational 
foundation for subsequent detectors [10, 8]. 
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To meet latency constraints, single-stage detectors reframed detection as a dense, 
per-location prediction problem. The Single Shot Detector (SSD) introduced multi-scale feature 
maps and default boxes to predict object classes and locations in one forward pass, enabling 
practical real-time detection on consumer GPUs and embedded boards [9]. Concurrently, the 
YOLO family popularized an end-to-end regression formulation that directly predicts bounding 
boxes and class probabilities from grid cells, demonstrating that a unified single-network 
approach can attain high throughput while maintaining competitive accuracy [1]. Subsequent 
YOLO revisions incrementally incorporated proven deep-learning practices—anchor boxes and 
batch normalization (YOLOv2), deeper residual backbones and multi-scale prediction 
(YOLOv3), and cross-stage partial connections plus stronger augmentation and loss functions 
(YOLOv4)—to continuously improve the speed/accuracy frontier [2–4]. 

Architectural innovations outside the YOLO lineage have also advanced the efficiency 
frontier. Residual connections (ResNet) enabled much deeper backbones without vanishing 
gradients, improving feature extraction for detection heads [8]. EfficientDet introduced model 
scaling and a compound scaling rule with a weighted bi-directional feature pyramid (BiFPN) to 
jointly scale resolution, depth, and width for better FLOPs-to-accuracy trade-offs [11]. Recent 
object detectors such as YOLOv7 and YOLOv8 emphasize efficient feature aggregation modules 
(E-ELAN, CSP variants), anchor-free heads, and training “bag-of-tricks” that improve 
small-object detection and convergence while minimizing inference overhead [5, 6]. YOLOv8’s 
anchor-free head simplifies box regression and often reduces inference cost and hyperparameter 
sensitivity relative to anchor-based variants [6]. 

Beyond raw model design, practical edge deployment relies on model scaling and 
hardware-aware optimizations. Lightweight architectures (e.g., MobileNet variants) and scaled 
YOLO “nano/small” variants provide parameter and FLOPs reductions that make real-time 
inference feasible on embedded SoCs [16]. On the software side, vendor stacks such as 
NVIDIA’s CUDA and TensorRT convert trained networks into optimized runtime engines that 
perform layer fusion, kernel autotuning, and mixed-precision execution (FP16/INT8), providing 
multi-fold speedups over naive framework inference [12, 13]. Quantization (post-training and 
quantization-aware training) is a key lever: INT8 execution yields major throughput gains but 
requires careful calibration or retraining to limit accuracy degradation. 

Embedded NVIDIA Jetson platforms have become a de-facto testbed for on-device 
vision, with studies demonstrating YOLO variants running in real time after TensorRT 
optimization and model pruning/quantization on Jetson Nano, Xavier, and AGX Orin boards [7]. 
These works consistently report that (1) model choice (variant size) governs whether strict 
real-time constraints can be met, (2) TensorRT FP16 execution often suffices for a favourable 
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accuracy/latency point, and (3) INT8 can further increase throughput at modest accuracy cost 
when calibration or quantization-aware training is employed. 

Despite these advances, gaps remain when translating state-of-the-art detectors to 
power-constrained edge devices. First, the interaction between modern anchor-free heads and 
hardware accelerators is underexplored: anchor-free designs reduce algorithmic complexity but 
their memory/access patterns relative to optimized kernels can affect real throughput. Second, 
quantization robustness — particularly for small-object detection under varied lighting and 
occlusion — requires more empirical evaluation across platforms and workloads. Third, holistic 
evaluations that jointly report detection accuracy, latency, energy consumption, and thermal 
behaviour across Jetson tiers (Orin Nano, Xavier NX, AGX Orin) are limited. 

This study addresses those gaps by deploying the latest YOLOv8 architecture on the 
Jetson Orin Nano, combining model scaling, ONNX export, and TensorRT optimization 
(FP16/INT8 calibration) to evaluate the practical trade-offs between throughput (FPS), per-frame 
latency, GPU utilization, and detection robustness under real camera feeds. By situating our 
experimental results within the progression documented in [1–14], we provide an integrated 
assessment of modern single-stage detectors’ viability for real-world edge-AI applications 
. 
3. Methodology  
 

 
Fig. 1. Proposed Methodology for Real-Time YOLOv8 Object Detection 
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The proposed methodology for deploying YOLOv8 on the Jetson Orin Nano involves a 
structured pipeline, as illustrated in Fig. 1. 

1.​ Model Initialization (YOLOv8): The pretrained YOLOv8 model was selected due to its 
anchor-free detection head and computational efficiency, suitable for edge AI. 

2.​ Feature Extraction (CSP Backbone): Input frames are passed through the Cross-Stage 
Partial (CSP) backbone, which enhances gradient flow and reduces memory usage while 
extracting multi-scale features. 

3.​ Feature Aggregation (PANet Neck): The Path Aggregation Network (PANet) integrates 
shallow and deep feature maps to improve detection across objects of varying sizes. 

4.​ Detection Head & Non-Maximum Suppression: The detection head predicts bounding 
boxes, class scores, and confidence values. Non-Maximum Suppression (NMS) is applied 
to filter redundant detections, ensuring a single bounding box per object. 

5.​ Model Optimization (ONNX and TensorRT): For real-time deployment, the 
PyTorch-trained YOLOv8 model was exported to ONNX format and optimized using 
TensorRT. FP16 and INT8 precision modes were tested to accelerate inference while 
minimizing accuracy loss. 

6.​ Final Deployment: The optimized TensorRT model executes on the Jetson Orin Nano 
GPU, processing frames from a Logitech USB camera at VGA resolution (640×480, 30 
FPS), and overlaying detections on live video in real-time. 
 

4. Experimental Setup and Implementation   
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Fig. 2. Pipeline of YOLOv8 Inference for Object Detection 
 
 

1.​ Input Image/ video Acquisition: The System begins by landing data from an input 
source. In our case, this was a Logitech UDB Camera connected to the Jetson Orin Nano, 
continuously streaming real- time video frames. The channel also supports stationary 
images or pre-recorded videotape lines, but for bedded edge deployment, live videotape 
aqueducts are most applicable.   

2.​ Preprocessing (Resize, homogenize): Each incoming frame is resized to a fixed input 
dimension to match YOLOv8’s input subcaste conditions. Pixel values are regularized to 
insure thickness and numerical stability during conclusion. Preprocessing is kept 
featherlight to save outturn, but on- device optimizations (CUDA- accelerated OpenCV) 
are used to avoid CPU backups.   

3.​ YOLO Model (complication Neural Network Conclusion):  The pre-processed frame 
is passed into the YOLOv8 neural network stationed on the Jetson Orin Nano GPU. The 
model excerpts hierarchical features using complication layers (CSP backbone) and 
performs multi-scale discovery via the PANet neck. Unlike earlier anchor-grounded 
YOLO performances, YOLOv8 uses an anchor-free discovery head, prognosticating 
bounding boxes directly at the pixel position, which simplifies training and pets up 
conclusion. The model labors raw prognostications including bounding box equals, 
objectness scores, and class chances.   

4.​ Prognostications (Bounding Boxes, Classes, Confidence): At this stage, the network 
produces multiple lapping bounding boxes for detected objects. Each bounding box is 
represented by  

●​ Coordinates (x, y, w, h) relative to the image   
●​ Objectness score (liability that the box contains the object)   
●​ Class Probability distribution across all known classes. 

These raw prognostications frequently contain redundancies   
5.​ Non-Maximum repression (Remove Duplicates): To upgrade prognostications, 

non-maximum repression (NMS) is applied:  • Boxes with confidence scores below a 
threshold are discarded.   

●​ Among lapping boxes for the same object, only the box with the loftiest 
confidence is retained while others are suppressed.   

This ensures that each object is represented by a single bounding box, perfecting 
readability and usability.   
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6.​ Final Detected Objects (Markers Boxes):  The remaining bounding boxes are overlaid 
on the input frame each annotated with its prognosticated class marker and confidence 
score. These annotated frames are displayed in real- time at 30 fps on the Jetson Orin 
Nano, validating both speed and delicacy 
 
 

5. Result Analysis  
 

​
Fig. 3. Annotated detection output demonstrating YOLOv8 inference on embedded 

hardware with bounding boxes and labels 
 

The deployed YOLOv8 detection pipeline on the NVIDIA Jetson Orin Nano 
demonstrated stable real-time inference performance at approximately 30 FPS with VGA 
resolution (640×480). The system maintained an average latency of 22–25 ms per frame, while 
GPU utilization was observed at ~85% under sustained load.  

These results confirm that the Orin Nano, despite its modest power envelope (15 W), is 
capable of executing advanced single-shot detection architectures in real time.Qualitative results 
from the live video stream are presented in Fig. 3. The annotated frame demonstrates the 
detection of multiple objects, including persons with confidence levels ranging from 0.48 to 
0.93, and a cell phone with a confidence score of 0.53.  

The bounding boxes were consistently aligned with object boundaries, validating the 
robustness of the detection pipeline under varying poses and illumination conditions. 
Importantly, YOLOv8’s anchor-free detection head contributed to precise localization of both 
large objects (persons) and smaller items (cell phone), even in cluttered environments. 

Quantitative observations further emphasize the trade-offs between detection accuracy 
and inference speed. INT8 quantization trials indicated potential throughput improvements of 
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~1.5×, albeit with a marginal reduction in mean average precision (mAP). This suggests that with 
quantization-aware training, the Orin Nano could support even higher frame rates while retaining 
acceptable detection quality. 
Overall, the experimental analysis highlights three key findings: 

1.​ Throughput and Latency: The system achieved real-time performance suitable for edge 
deployment. 

2.​ Detection Robustness: Accurate recognition of both large and small objects 
demonstrates YOLOv8’s adaptability to real-world scenes. 

3.​ Scalability: Model compression and quantization present viable pathways to further 
optimize deployment on resource-limited embedded hardware 

. 
Conclusion  
 

This work has demonstrated the practical deployment of the YOLOv8 object detection 
framework on the NVIDIA Jetson Orin Nano, utilizing a Logitech USB camera for real-time 
video input. The system achieved stable performance at approximately 30 FPS with VGA 
resolution, validating that advanced deep learning models such as YOLOv8 can be executed 
effectively on compact, power-constrained embedded hardware. Detection results highlighted 
reliable identification of persons and objects in diverse environments, with latency maintained in 
the range of 22–25 ms and GPU utilization at ~85%. These findings confirm the suitability of the 
Orin Nano as a viable platform for edge AI applications, including intelligent surveillance, 
robotics, and human–computer interaction, where low-latency inference and energy efficiency 
are critical. 

While the presented results are promising, several avenues for future work remain. One 
important extension is the application of quantization-aware training to enhance robustness when 
operating in INT8 precision, thereby further reducing inference time without compromising 
detection accuracy. Another direction is the integration of YOLOv8-segmentation and pose 
estimation modules, which would extend the system from simple bounding-box detection to 
richer scene understanding. Benchmarking against alternative lightweight detectors such as 
MobileNet-SSD, YOLO-NAS, and EfficientDet will also provide a broader perspective on 
trade-offs between accuracy, throughput, and energy efficiency on the Orin Nano platform. 

In addition, cross-platform evaluations against higher-tier Jetson devices (e.g., Jetson 
Xavier NX, AGX Orin) can help contextualize the Orin Nano’s performance envelope, revealing 
the scalability of YOLOv8 across NVIDIA’s embedded ecosystem. Finally, the incorporation of 
adaptive inference strategies, where model complexity or input resolution is dynamically 
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adjusted based on real-time scene complexity, holds potential to significantly extend both system 
performance and battery life in long-term field deployments. Collectively, these future directions 
will further consolidate the role of embedded object detection pipelines in practical edge AI 
deployments. 
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