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Abstract

Recent advances in real-time object detection have transformed the field of computer
vision by enabling end-to-end, single-shot inference pipelines suitable for embedded
applications. The Ultralytics YOLOvV8 model represents the latest iteration in the YOLO family,
introducing an anchor-free detection head, CSP-based backbones, and advanced training
optimizations. This work presents a complete deployment pipeline of YOLOvVS on the NVIDIA
Jetson Orin Nano, a 40 TOPS edge Al device with an Ampere GPU, in conjunction with a
Logitech USB camera as the input source. The implementation integrates PyTorch training,
ONNX export, and TensorRT optimization for high-throughput, low-latency inference.
Experimental results demonstrate reliable detection of persons and objects at approximately 30
frames per second for VGA resolution, highlighting the feasibility of embedded real-time vision
in constrained power envelopes. The system’s deployment considerations, including
quantization, power-performance trade-offs, and application implications for robotics and smart
surveillance, are discussed.

Keywords:
YOLOVS, object detection, Jetson Orin Nano, edge Al, TensorRT, real-time inference

1. Introduction

Object Discovery is a foundation of computer vision, enabling tasks ranging from
independent navigation and surveillance to stoked reality. Traditional multi-stage sensors similar
as R- CNN, Fast R- CNN, and Faster R- CNN achieved state- of- the- art delicacy but suffered
from high computational outflow, limiting their mileage for real- time deployment on embedded
bias. In discrepancy, the YOLO (You Only Look formerly) family innovated single- stage
discovery, framing the task as a retrogression problem and thereby achieving
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orders-of-magnitude advancements in conclusion speed. YOLOVS, introduced by Ultralytics in
2023, integrates anchor-free discovery heads, effective CSP chines, and streamlined training
channels to offer a favorable balance between discovery delicacy and computational
effectiveness. Meanwhile, the NVIDIA Jetson Orin Nano provides an affordable yet important
platform for edge Al, using its 1024 CUDA cores, 32 Tensor Cores, and LPDDRS memory
subsystem to deliver 40 covers of Al performance at 7 — 15 W power. Planting YOLOVS on this
device offers practical sapience into the marriage of state- of- the- art discovery algorithms with
compact embedded tackle.
Research Objectives and Methodology
This study aims to evaluate the effectiveness of deploying the YOLOvVS8 object detection
framework on the NVIDIA Jetson Orin Nano for real-time vision tasks using a USB camera
input. The research objectives are:
1. To investigate the feasibility of running YOLOvVS8 on an embedded GPU platform (Jetson
Orin Nano) for real-time detection.
2. To optimize the YOLOvV8 model for edge deployment using ONNX conversion and
TensorRT acceleration (FP16 and INTS).
3. To measure system performance in terms of frames per second (FPS), latency, and GPU
utilization under live video conditions.
4. To assess detection accuracy and robustness for multiple objects (e.g., persons, cell
phones) under varying lighting and scene complexity.
5. To provide insights into the trade-offs between model size, accuracy, and speed in edge
Al deployments

2. Literature Survey

Object detection has evolved along two complementary axes: improving per-image
accuracy and reducing inference latency to enable real-time operation on constrained hardware.
Early high-accuracy approaches followed a two-stage paradigm where region proposals are
generated and then classified. R-CNN and its derivatives (Fast R-CNN, Faster R-CNN)
formalized this workflow and achieved strong detection performance by combining selective
search / region proposal networks with deeper classifiers, but at the cost of high computational
overhead and latency that limits real-time applicability [14]. The success of deep convolutional
backbones pretrained on large labelled corpora (e.g., ImageNet) provided the representational
foundation for subsequent detectors [10, §].
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To meet latency constraints, single-stage detectors reframed detection as a dense,
per-location prediction problem. The Single Shot Detector (SSD) introduced multi-scale feature
maps and default boxes to predict object classes and locations in one forward pass, enabling
practical real-time detection on consumer GPUs and embedded boards [9]. Concurrently, the
YOLO family popularized an end-to-end regression formulation that directly predicts bounding
boxes and class probabilities from grid cells, demonstrating that a unified single-network
approach can attain high throughput while maintaining competitive accuracy [1]. Subsequent
YOLO revisions incrementally incorporated proven deep-learning practices—anchor boxes and
batch normalization (YOLOv2), deeper residual backbones and multi-scale prediction
(YOLOV3), and cross-stage partial connections plus stronger augmentation and loss functions
(YOLOv4)—to continuously improve the speed/accuracy frontier [2—4].

Architectural innovations outside the YOLO lineage have also advanced the efficiency
frontier. Residual connections (ResNet) enabled much deeper backbones without vanishing
gradients, improving feature extraction for detection heads [8]. EfficientDet introduced model
scaling and a compound scaling rule with a weighted bi-directional feature pyramid (BiFPN) to
jointly scale resolution, depth, and width for better FLOPs-to-accuracy trade-offs [11]. Recent
object detectors such as YOLOv7 and YOLOvV8 emphasize efficient feature aggregation modules
(E-ELAN, CSP variants), anchor-free heads, and training “bag-of-tricks” that improve
small-object detection and convergence while minimizing inference overhead [5, 6]. YOLOVS8’s
anchor-free head simplifies box regression and often reduces inference cost and hyperparameter
sensitivity relative to anchor-based variants [6].

Beyond raw model design, practical edge deployment relies on model scaling and
hardware-aware optimizations. Lightweight architectures (e.g., MobileNet variants) and scaled
YOLO “nano/small” variants provide parameter and FLOPs reductions that make real-time
inference feasible on embedded SoCs [16]. On the software side, vendor stacks such as
NVIDIA’s CUDA and TensorRT convert trained networks into optimized runtime engines that
perform layer fusion, kernel autotuning, and mixed-precision execution (FP16/INTS), providing
multi-fold speedups over naive framework inference [12, 13]. Quantization (post-training and
quantization-aware training) is a key lever: INT8 execution yields major throughput gains but
requires careful calibration or retraining to limit accuracy degradation.

Embedded NVIDIA Jetson platforms have become a de-facto testbed for on-device
vision, with studies demonstrating YOLO variants running in real time after TensorRT
optimization and model pruning/quantization on Jetson Nano, Xavier, and AGX Orin boards [7].
These works consistently report that (1) model choice (variant size) governs whether strict
real-time constraints can be met, (2) TensorRT FP16 execution often suffices for a favourable
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accuracy/latency point, and (3) INT8 can further increase throughput at modest accuracy cost
when calibration or quantization-aware training is employed.

Despite these advances, gaps remain when translating state-of-the-art detectors to
power-constrained edge devices. First, the interaction between modern anchor-free heads and
hardware accelerators is underexplored: anchor-free designs reduce algorithmic complexity but
their memory/access patterns relative to optimized kernels can affect real throughput. Second,
quantization robustness — particularly for small-object detection under varied lighting and
occlusion — requires more empirical evaluation across platforms and workloads. Third, holistic
evaluations that jointly report detection accuracy, latency, energy consumption, and thermal
behaviour across Jetson tiers (Orin Nano, Xavier NX, AGX Orin) are limited.

This study addresses those gaps by deploying the latest YOLOvVS8 architecture on the
Jetson Orin Nano, combining model scaling, ONNX export, and TensorRT optimization
(FP16/INT8 calibration) to evaluate the practical trade-offs between throughput (FPS), per-frame
latency, GPU utilization, and detection robustness under real camera feeds. By situating our
experimental results within the progression documented in [1-14], we provide an integrated
assessment of modern single-stage detectors’ viability for real-world edge-Al applications

3. Methodology

YOLOvS8

l

CPS Backbone
PANet neck

l

Non-Maximum suppression

|

YOLOvVS

l

OXXN Tensor RT

Fig. 1. Proposed Methodology for Real-Time YOLOVS8 Object Detection
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The proposed methodology for deploying YOLOvV8 on the Jetson Orin Nano involves a
structured pipeline, as illustrated in Fig. 1.

1.

Model Initialization (YOLOVS8): The pretrained YOLOv8 model was selected due to its
anchor-free detection head and computational efficiency, suitable for edge Al

Feature Extraction (CSP Backbone): Input frames are passed through the Cross-Stage
Partial (CSP) backbone, which enhances gradient flow and reduces memory usage while
extracting multi-scale features.

Feature Aggregation (PANet Neck): The Path Aggregation Network (PANet) integrates
shallow and deep feature maps to improve detection across objects of varying sizes.
Detection Head & Non-Maximum Suppression: The detection head predicts bounding
boxes, class scores, and confidence values. Non-Maximum Suppression (NMS) is applied
to filter redundant detections, ensuring a single bounding box per object.

Model Optimization (ONNX and TensorRT): For real-time deployment, the
PyTorch-trained YOLOvV8 model was exported to ONNX format and optimized using
TensorRT. FP16 and INTS8 precision modes were tested to accelerate inference while
minimizing accuracy loss.

Final Deployment: The optimized TensorRT model executes on the Jetson Orin Nano
GPU, processing frames from a Logitech USB camera at VGA resolution (640x480, 30
FPS), and overlaying detections on live video in real-time.

4. Experimental Setup and Implementation

Input Image/Video

|

Preprocessing
(Resize, Normalize)

YOLO Model
(Convolutional Neural Network)

|

Predictions
(Bounding Boxes, Classes, Confidence)

Non-Maximum Suppression
(Remove Duplicates)

l

Final Detected Objects
(Labels + Boxes)
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Fig. 2. Pipeline of YOLOVS8 Inference for Object Detection

1. Input Image/ video Acquisition: The System begins by landing data from an input
source. In our case, this was a Logitech UDB Camera connected to the Jetson Orin Nano,
continuously streaming real- time video frames. The channel also supports stationary
images or pre-recorded videotape lines, but for bedded edge deployment, live videotape
aqueducts are most applicable.

2. Preprocessing (Resize, homogenize): Each incoming frame is resized to a fixed input
dimension to match YOLOV8’s input subcaste conditions. Pixel values are regularized to
insure thickness and numerical stability during conclusion. Preprocessing is kept
featherlight to save outturn, but on- device optimizations (CUDA- accelerated OpenCV)
are used to avoid CPU backups.

3. YOLO Model (complication Neural Network Conclusion): The pre-processed frame
is passed into the YOLOV8 neural network stationed on the Jetson Orin Nano GPU. The
model excerpts hierarchical features using complication layers (CSP backbone) and
performs multi-scale discovery via the PANet neck. Unlike earlier anchor-grounded
YOLO performances, YOLOvV8 uses an anchor-free discovery head, prognosticating
bounding boxes directly at the pixel position, which simplifies training and pets up
conclusion. The model labors raw prognostications including bounding box equals,
objectness scores, and class chances.

4. Prognostications (Bounding Boxes, Classes, Confidence): At this stage, the network
produces multiple lapping bounding boxes for detected objects. Each bounding box is
represented by

e Coordinates (x, y, w, h) relative to the image

e Objectness score (liability that the box contains the object)

e C(lass Probability distribution across all known classes.
These raw prognostications frequently contain redundancies

5. Non-Maximum repression (Remove Duplicates): To upgrade prognostications,
non-maximum repression (NMS) is applied: + Boxes with confidence scores below a
threshold are discarded.

e Among lapping boxes for the same object, only the box with the loftiest
confidence is retained while others are suppressed.
This ensures that each object is represented by a single bounding box, perfecting
readability and usability.
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6. Final Detected Objects (Markers Boxes): The remaining bounding boxes are overlaid
on the input frame each annotated with its prognosticated class marker and confidence
score. These annotated frames are displayed in real- time at 30 fps on the Jetson Orin
Nano, validating both speed and delicacy

5. Result Analysis

Fig. 3. Annotated detection output demonstrating YOLOVS inference on embedded
hardware with bounding boxes and labels

The deployed YOLOvV8 detection pipeline on the NVIDIA Jetson Orin Nano
demonstrated stable real-time inference performance at approximately 30 FPS with VGA
resolution (640x480). The system maintained an average latency of 22-25 ms per frame, while
GPU utilization was observed at ~85% under sustained load.

These results confirm that the Orin Nano, despite its modest power envelope (15 W), is
capable of executing advanced single-shot detection architectures in real time.Qualitative results
from the live video stream are presented in Fig. 3. The annotated frame demonstrates the
detection of multiple objects, including persons with confidence levels ranging from 0.48 to
0.93, and a cell phone with a confidence score of 0.53.

The bounding boxes were consistently aligned with object boundaries, validating the
robustness of the detection pipeline under varying poses and illumination conditions.
Importantly, YOLOvVS8’s anchor-free detection head contributed to precise localization of both
large objects (persons) and smaller items (cell phone), even in cluttered environments.

Quantitative observations further emphasize the trade-offs between detection accuracy
and inference speed. INT8 quantization trials indicated potential throughput improvements of
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~1.5%, albeit with a marginal reduction in mean average precision (mAP). This suggests that with
quantization-aware training, the Orin Nano could support even higher frame rates while retaining
acceptable detection quality.
Overall, the experimental analysis highlights three key findings:
1. Throughput and Latency: The system achieved real-time performance suitable for edge
deployment.
2. Detection Robustness: Accurate recognition of both large and small objects
demonstrates YOLOV8’s adaptability to real-world scenes.
3. Scalability: Model compression and quantization present viable pathways to further
optimize deployment on resource-limited embedded hardware

Conclusion

This work has demonstrated the practical deployment of the YOLOvVS object detection
framework on the NVIDIA Jetson Orin Nano, utilizing a Logitech USB camera for real-time
video input. The system achieved stable performance at approximately 30 FPS with VGA
resolution, validating that advanced deep learning models such as YOLOvS8 can be executed
effectively on compact, power-constrained embedded hardware. Detection results highlighted
reliable identification of persons and objects in diverse environments, with latency maintained in
the range of 22-25 ms and GPU utilization at ~85%. These findings confirm the suitability of the
Orin Nano as a viable platform for edge Al applications, including intelligent surveillance,
robotics, and human—computer interaction, where low-latency inference and energy efficiency
are critical.

While the presented results are promising, several avenues for future work remain. One
important extension is the application of quantization-aware training to enhance robustness when
operating in INTS8 precision, thereby further reducing inference time without compromising
detection accuracy. Another direction is the integration of YOLOv8-segmentation and pose
estimation modules, which would extend the system from simple bounding-box detection to
richer scene understanding. Benchmarking against alternative lightweight detectors such as
MobileNet-SSD, YOLO-NAS, and EfficientDet will also provide a broader perspective on
trade-offs between accuracy, throughput, and energy efficiency on the Orin Nano platform.

In addition, cross-platform evaluations against higher-tier Jetson devices (e.g., Jetson
Xavier NX, AGX Orin) can help contextualize the Orin Nano’s performance envelope, revealing
the scalability of YOLOV8 across NVIDIA’s embedded ecosystem. Finally, the incorporation of
adaptive inference strategies, where model complexity or input resolution is dynamically
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adjusted based on real-time scene complexity, holds potential to significantly extend both system

performance and battery life in long-term field deployments. Collectively, these future directions
will further consolidate the role of embedded object detection pipelines in practical edge Al

deployments.
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